178系列来此zpi集合系列了啊,看有多少山寨版

深入Java集合学习系列:Hashtable的实现原理
我们先对Hashtable有个整体认识,然后再学习它的源码,最后再通过实例来学会使用Hashtable。
转载请注明出处:
第1部分 Hashtable介绍
Hashtable 简介
和一样,Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射。
Hashtable&继承于Dictionary,实现了Map、Cloneable、java.io.Serializable接口。
Hashtable 的函数都是同步的,这意味着它是线程安全的。它的key、value都不可以为null。此外,Hashtable中的映射不是有序的。
Hashtable 的实例有两个参数影响其性能:初始容量&和&加载因子。容量 是哈希表中桶 的数量,初始容量 就是哈希表创建时的容量。注意,哈希表的状态为 open:在发生“哈希冲突”的情况下,单个桶会存储多个条目,这些条目必须按顺序搜索。加载因子 是对哈希表在其容量自动增加之前可以达到多满的一个尺度。初始容量和加载因子这两个参数只是对该实现的提示。关于何时以及是否调用 rehash
方法的具体细节则依赖于该实现。
通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查找某个条目的时间(在大多数 Hashtable 操作中,包括 get 和 put 操作,都反映了这一点)。
Hashtable的构造函数
// 默认构造函数。
public Hashtable()
// 指定“容量大小”的构造函数
public Hashtable(int initialCapacity)
// 指定“容量大小”和“加载因子”的构造函数
public Hashtable(int initialCapacity, float loadFactor)
// 包含“子Map”的构造函数
public Hashtable(Map&? extends K, ? extends V& t)
Hashtable的API
synchronized void
synchronized Object
contains(Object value)
synchronized boolean
containsKey(Object key)
synchronized boolean
containsValue(Object value)
synchronized Enumeration&V&
elements()
synchronized Set&Entry&K, V&&
entrySet()
synchronized boolean
equals(Object object)
synchronized V
get(Object key)
synchronized int
hashCode()
synchronized boolean
synchronized Set&K&
synchronized Enumeration&K&
synchronized V
put(K key, V value)
synchronized void
putAll(Map&? extends K, ? extends V& map)
synchronized V
remove(Object key)
synchronized int
synchronized String
toString()
synchronized Collection&V&
第2部分 Hashtable数据结构
Hashtable的继承关系
java.lang.Object
java.util.Dictionary&K, V&
java.util.Hashtable&K, V&
public class Hashtable&K,V& extends Dictionary&K,V&
implements Map&K,V&, Cloneable, java.io.Serializable { }
Hashtable与Map关系如下图:
从图中可以看出:&
(01) Hashtable继承于Dictionary类,实现了Map接口。Map是&key-value键值对&接口,Dictionary是声明了操作&键值对&函数接口的抽象类。&
(02) Hashtable是通过&拉链法&实现的哈希表。它包括几个重要的成员变量:table,&count,&threshold,&loadFactor,&modCount。
  table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的&key-value键值对&都是存储在Entry数组中的。&
  count是Hashtable的大小,它是Hashtable保存的键值对的数量。&
  threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值=&容量*加载因子&。
  loadFactor就是加载因子。&
  modCount是用来实现fail-fast机制的
第3部分 Hashtable源码解析(基于JDK1.6.0_45)
为了更了解Hashtable的原理,下面对Hashtable源码代码作出分析。
在阅读源码时,建议参考后面的说明来建立对Hashtable的整体认识,这样更容易理解Hashtable。
1 package java.
2 import java.io.*;
4 public class Hashtable&K,V&
extends Dictionary&K,V&
implements Map&K,V&, Cloneable, java.io.Serializable {
// Hashtable保存key-value的数组。
// Hashtable是采用拉链法实现的,每一个Entry本质上是一个单向链表
private transient Entry[]
// Hashtable中元素的实际数量
private transient int
// 阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)
private int
// 加载因子
private float loadF
// Hashtable被改变的次数
private transient int modCount = 0;
// 序列版本号
private static final long serialVersionUID = 2286392L;
// 指定“容量大小”和“加载因子”的构造函数
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity & 0)
throw new IllegalArgumentException(&Illegal Capacity: &+
initialCapacity);
if (loadFactor &= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException(&Illegal Load: &+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadF
table = new Entry[initialCapacity];
threshold = (int)(initialCapacity * loadFactor);
// 指定“容量大小”的构造函数
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
// 默认构造函数。
public Hashtable() {
// 默认构造函数,指定的容量大小是11;加载因子是0.75
this(11, 0.75f);
// 包含“子Map”的构造函数
public Hashtable(Map&? extends K, ? extends V& t) {
this(Math.max(2*t.size(), 11), 0.75f);
// 将“子Map”的全部元素都添加到Hashtable中
putAll(t);
public synchronized int size() {
public synchronized boolean isEmpty() {
return count == 0;
// 返回“所有key”的枚举对象
public synchronized Enumeration&K& keys() {
return this.&K&getEnumeration(KEYS);
// 返回“所有value”的枚举对象
public synchronized Enumeration&V& elements() {
return this.&V&getEnumeration(VALUES);
// 判断Hashtable是否包含“值(value)”
public synchronized boolean contains(Object value) {
// Hashtable中“键值对”的value不能是null,
// 若是null的话,抛出异常!
if (value == null) {
throw new NullPointerException();
// 从后向前遍历table数组中的元素(Entry)
// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
Entry tab[] =
for (int i = tab. i-- & 0 ;) {
for (Entry&K,V& e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
return false;
public boolean containsValue(Object value) {
return contains(value);
// 判断Hashtable是否包含key
public synchronized boolean containsKey(Object key) {
Entry tab[] =
int hash = key.hashCode();
// 计算索引值,
// % tab.length 的目的是防止数据越界
int index = (hash & 0x7FFFFFFF) % tab.
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry&K,V& e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
return false;
// 返回key对应的value,没有的话返回null
public synchronized V get(Object key) {
Entry tab[] =
int hash = key.hashCode();
// 计算索引值,
int index = (hash & 0x7FFFFFFF) % tab.
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry&K,V& e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return null;
// 调整Hashtable的长度,将长度变成原来的(2倍+1)
// (01) 将“旧的Entry数组”赋值给一个临时变量。
// (02) 创建一个“新的Entry数组”,并赋值给“旧的Entry数组”
// (03) 将“Hashtable”中的全部元素依次添加到“新的Entry数组”中
protected void rehash() {
int oldCapacity = table.
Entry[] oldMap =
int newCapacity = oldCapacity * 2 + 1;
Entry[] newMap = new Entry[newCapacity];
modCount++;
threshold = (int)(newCapacity * loadFactor);
table = newM
for (int i = oldC i-- & 0 ;) {
for (Entry&K,V& old = oldMap[i] ; old != null ; ) {
Entry&K,V& e =
old = old.
int index = (e.hash & 0x7FFFFFFF) % newC
e.next = newMap[index];
newMap[index] =
// 将“key-value”添加到Hashtable中
public synchronized V put(K key, V value) {
// Hashtable中不能插入value为null的元素!!!
if (value == null) {
throw new NullPointerException();
// 若“Hashtable中已存在键为key的键值对”,
// 则用“新的value”替换“旧的value”
Entry tab[] =
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.
for (Entry&K,V& e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V old = e.
// 若“Hashtable中不存在键为key的键值对”,
// (01) 将“修改统计数”+1
modCount++;
// (02) 若“Hashtable实际容量” & “阈值”(阈值=总的容量 * 加载因子)
则调整Hashtable的大小
if (count &= threshold) {
// Rehash the table if the threshold is exceeded
index = (hash & 0x7FFFFFFF) % tab.
// (03) 将“Hashtable中index”位置的Entry(链表)保存到e中
Entry&K,V& e = tab[index];
// (04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。
tab[index] = new Entry&K,V&(hash, key, value, e);
// (05) 将“Hashtable的实际容量”+1
count++;
return null;
// 删除Hashtable中键为key的元素
public synchronized V remove(Object key) {
Entry tab[] =
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.
// 找到“key对应的Entry(链表)”
// 然后在链表中找出要删除的节点,并删除该节点。
for (Entry&K,V& e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) {
prev.next = e.
tab[index] = e.
V oldValue = e.
e.value = null;
return oldV
return null;
// 将“Map(t)”的中全部元素逐一添加到Hashtable中
public synchronized void putAll(Map&? extends K, ? extends V& t) {
for (Map.Entry&? extends K, ? extends V& e : t.entrySet())
put(e.getKey(), e.getValue());
// 清空Hashtable
// 将Hashtable的table数组的值全部设为null
public synchronized void clear() {
Entry tab[] =
modCount++;
for (int index = tab. --index &= 0; )
tab[index] = null;
count = 0;
// 克隆一个Hashtable,并以Object的形式返回。
public synchronized Object clone() {
Hashtable&K,V& t = (Hashtable&K,V&) super.clone();
t.table = new Entry[table.length];
for (int i = table. i-- & 0 ; ) {
t.table[i] = (table[i] != null)
? (Entry&K,V&) table[i].clone() : null;
t.keySet = null;
t.entrySet = null;
t.values = null;
t.modCount = 0;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
public synchronized String toString() {
int max = size() - 1;
if (max == -1)
return &{}&;
StringBuilder sb = new StringBuilder();
Iterator&Map.Entry&K,V&& it = entrySet().iterator();
sb.append('{');
for (int i = 0; ; i++) {
Map.Entry&K,V& e = it.next();
K key = e.getKey();
V value = e.getValue();
sb.append(key
== this ? &(this Map)& : key.toString());
sb.append('=');
sb.append(value == this ? &(this Map)& : value.toString());
if (i == max)
return sb.append('}').toString();
sb.append(&, &);
// 获取Hashtable的枚举类对象
// 若Hashtable的实际大小为0,则返回“空枚举类”对象;
// 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
private &T& Enumeration&T& getEnumeration(int type) {
if (count == 0) {
return (Enumeration&T&)emptyE
return new Enumerator&T&(type, false);
// 获取Hashtable的迭代器
// 若Hashtable的实际大小为0,则返回“空迭代器”对象;
// 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
private &T& Iterator&T& getIterator(int type) {
if (count == 0) {
return (Iterator&T&) emptyI
return new Enumerator&T&(type, true);
// Hashtable的“key的集合”。它是一个Set,意味着没有重复元素
private transient volatile Set&K& keySet = null;
// Hashtable的“key-value的集合”。它是一个Set,意味着没有重复元素
private transient volatile Set&Map.Entry&K,V&& entrySet = null;
// Hashtable的“key-value的集合”。它是一个Collection,意味着可以有重复元素
private transient volatile Collection&V& values = null;
// 返回一个被synchronizedSet封装后的KeySet对象
// synchronizedSet封装的目的是对KeySet的所有方法都添加synchronized,实现多线程同步
public Set&K& keySet() {
if (keySet == null)
keySet = Collections.synchronizedSet(new KeySet(), this);
return keyS
// Hashtable的Key的Set集合。
// KeySet继承于AbstractSet,所以,KeySet中的元素没有重复的。
private class KeySet extends AbstractSet&K& {
public Iterator&K& iterator() {
return getIterator(KEYS);
public int size() {
public boolean contains(Object o) {
return containsKey(o);
public boolean remove(Object o) {
return Hashtable.this.remove(o) != null;
public void clear() {
Hashtable.this.clear();
// 返回一个被synchronizedSet封装后的EntrySet对象
// synchronizedSet封装的目的是对EntrySet的所有方法都添加synchronized,实现多线程同步
public Set&Map.Entry&K,V&& entrySet() {
if (entrySet==null)
entrySet = Collections.synchronizedSet(new EntrySet(), this);
return entryS
// Hashtable的Entry的Set集合。
// EntrySet继承于AbstractSet,所以,EntrySet中的元素没有重复的。
private class EntrySet extends AbstractSet&Map.Entry&K,V&& {
public Iterator&Map.Entry&K,V&& iterator() {
return getIterator(ENTRIES);
public boolean add(Map.Entry&K,V& o) {
return super.add(o);
// 查找EntrySet中是否包含Object(0)
// 首先,在table中找到o对应的Entry(Entry是一个单向链表)
// 然后,查找Entry链表中是否存在Object
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry entry = (Map.Entry)o;
Object key = entry.getKey();
Entry[] tab =
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.
for (Entry e = tab[index]; e != null; e = e.next)
if (e.hash==hash && e.equals(entry))
return true;
return false;
// 删除元素Object(0)
// 首先,在table中找到o对应的Entry(Entry是一个单向链表)
// 然后,删除链表中的元素Object
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry&K,V& entry = (Map.Entry&K,V&)
K key = entry.getKey();
Entry[] tab =
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.
for (Entry&K,V& e = tab[index], prev = null; e != null;
prev = e, e = e.next) {
if (e.hash==hash && e.equals(entry)) {
modCount++;
if (prev != null)
prev.next = e.
tab[index] = e.
e.value = null;
return true;
return false;
public int size() {
public void clear() {
Hashtable.this.clear();
// 返回一个被synchronizedCollection封装后的ValueCollection对象
// synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步
public Collection&V& values() {
if (values==null)
values = Collections.synchronizedCollection(new ValueCollection(),
// Hashtable的value的Collection集合。
// ValueCollection继承于AbstractCollection,所以,ValueCollection中的元素可以重复的。
private class ValueCollection extends AbstractCollection&V& {
public Iterator&V& iterator() {
return getIterator(VALUES);
public int size() {
public boolean contains(Object o) {
return containsValue(o);
public void clear() {
Hashtable.this.clear();
// 重新equals()函数
// 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等
public synchronized boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof Map))
return false;
Map&K,V& t = (Map&K,V&)
if (t.size() != size())
return false;
// 通过迭代器依次取出当前Hashtable的key-value键值对
// 并判断该键值对,存在于Hashtable(o)中。
// 若不存在,则立即返回false;否则,遍历完“当前Hashtable”并返回true。
Iterator&Map.Entry&K,V&& i = entrySet().iterator();
while (i.hasNext()) {
Map.Entry&K,V& e = i.next();
K key = e.getKey();
V value = e.getValue();
if (value == null) {
if (!(t.get(key)==null && t.containsKey(key)))
return false;
if (!value.equals(t.get(key)))
return false;
} catch (ClassCastException unused)
return false;
} catch (NullPointerException unused) {
return false;
return true;
// 计算Hashtable的哈希值
// 若 Hashtable的实际大小为0 或者 加载因子&0,则返回0。
// 否则,返回“Hashtable中的每个Entry的key和value的异或值 的总和”。
public synchronized int hashCode() {
int h = 0;
if (count == 0 || loadFactor & 0)
// Returns zero
loadFactor = -loadF
// Mark hashCode computation in progress
Entry[] tab =
for (int i = 0; i & tab. i++)
for (Entry e = tab[i]; e != null; e = e.next)
h += e.key.hashCode() ^ e.value.hashCode();
loadFactor = -loadF
// Mark hashCode computation complete
// java.io.Serializable的写入函数
// 将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws IOException
// Write out the length, threshold, loadfactor
s.defaultWriteObject();
// Write out length, count of elements and then the key/value objects
s.writeInt(table.length);
s.writeInt(count);
for (int index = table.length-1; index &= 0; index--) {
Entry entry = table[index];
while (entry != null) {
s.writeObject(entry.key);
s.writeObject(entry.value);
entry = entry.
// java.io.Serializable的读取函数:根据写入方式读出
// 将Hashtable的“总的容量,实际容量,所有的Entry”依次读出
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
// Read in the length, threshold, and loadfactor
s.defaultReadObject();
// Read the original length of the array and number of elements
int origlength = s.readInt();
int elements = s.readInt();
// Compute new size with a bit of room 5% to grow but
// no larger than the original size.
Make the length
// odd if it's large enough, this helps distribute the entries.
// Guard against the length ending up zero, that's not valid.
int length = (int)(elements * loadFactor) + (elements / 20) + 3;
if (length & elements && (length & 1) == 0)
if (origlength & 0 && length & origlength)
Entry[] table = new Entry[length];
count = 0;
// Read the number of elements and then all the key/value objects
for (; elements & 0; elements--) {
K key = (K)s.readObject();
V value = (V)s.readObject();
// synch could be eliminated for performance
reconstitutionPut(table, key, value);
this.table =
private void reconstitutionPut(Entry[] tab, K key, V value)
throws StreamCorruptedException
if (value == null) {
throw new java.io.StreamCorruptedException();
// Makes sure the key is not already in the hashtable.
// This should not happen in deserialized version.
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.
for (Entry&K,V& e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
throw new java.io.StreamCorruptedException();
// Creates the new entry.
Entry&K,V& e = tab[index];
tab[index] = new Entry&K,V&(hash, key, value, e);
count++;
// Hashtable的Entry节点,它本质上是一个单向链表。
// 也因此,我们才能推断出Hashtable是由拉链法实现的散列表
private static class Entry&K,V& implements Map.Entry&K,V& {
// 哈希值
// 指向的下一个Entry,即链表的下一个节点
Entry&K,V&
// 构造函数
protected Entry(int hash, K key, V value, Entry&K,V& next) {
this.hash =
this.key =
this.value =
this.next =
protected Object clone() {
return new Entry&K,V&(hash, key, value,
(next==null ? null : (Entry&K,V&) next.clone()));
public K getKey() {
public V getValue() {
// 设置value。若value是null,则抛出异常。
public V setValue(V value) {
if (value == null)
throw new NullPointerException();
V oldValue = this.
this.value =
return oldV
// 覆盖equals()方法,判断两个Entry是否相等。
// 若两个Entry的key和value都相等,则认为它们相等。
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
(value==null ? e.getValue()==null : value.equals(e.getValue()));
public int hashCode() {
return hash ^ (value==null ? 0 : value.hashCode());
public String toString() {
return key.toString()+&=&+value.toString();
private static final int KEYS = 0;
private static final int VALUES = 1;
private static final int ENTRIES = 2;
// Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。因为,它同时实现了 “Enumerator接口”和“Iterator接口”。
private class Enumerator&T& implements Enumeration&T&, Iterator&T& {
// 指向Hashtable的table
Entry[] table = Hashtable.this.
// Hashtable的总的大小
int index = table.
Entry&K,V& entry = null;
Entry&K,V& lastReturned = null;
// Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志
// iterator为true,表示它是迭代器;否则,是枚举类。
// 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
protected int expectedModCount = modC
Enumerator(int type, boolean iterator) {
this.type =
this.iterator =
// 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
public boolean hasMoreElements() {
Entry&K,V& e =
Entry[] t =
/* Use locals for faster loop iteration */
while (e == null && i & 0) {
e = t[--i];
return e != null;
// 获取下一个元素
// 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”
// 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
// 然后,依次向后遍历单向链表Entry。
public T nextElement() {
Entry&K,V& et =
Entry[] t =
/* Use locals for faster loop iteration */
while (et == null && i & 0) {
et = t[--i];
if (et != null) {
Entry&K,V& e = lastReturned =
entry = e.
return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
throw new NoSuchElementException(&Hashtable Enumerator&);
// 迭代器Iterator的判断是否存在下一个元素
// 实际上,它是调用的hasMoreElements()
public boolean hasNext() {
return hasMoreElements();
// 迭代器获取下一个元素
// 实际上,它是调用的nextElement()
public T next() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return nextElement();
// 迭代器的remove()接口。
// 首先,它在table数组中找出要删除元素所在的Entry,
// 然后,删除单向链表Entry中的元素。
public void remove() {
if (!iterator)
throw new UnsupportedOperationException();
if (lastReturned == null)
throw new IllegalStateException(&Hashtable Enumerator&);
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
synchronized(Hashtable.this) {
Entry[] tab = Hashtable.this.
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.
for (Entry&K,V& e = tab[index], prev = null; e != null;
prev = e, e = e.next) {
if (e == lastReturned) {
modCount++;
expectedModCount++;
if (prev == null)
tab[index] = e.
prev.next = e.
lastReturned = null;
throw new ConcurrentModificationException();
private static Enumeration emptyEnumerator = new EmptyEnumerator();
private static Iterator emptyIterator = new EmptyIterator();
// 空枚举类
// 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。
private static class EmptyEnumerator implements Enumeration&Object& {
EmptyEnumerator() {
// 空枚举类的hasMoreElements() 始终返回false
public boolean hasMoreElements() {
return false;
// 空枚举类的nextElement() 抛出异常
public Object nextElement() {
throw new NoSuchElementException(&Hashtable Enumerator&);
// 空迭代器
// 当Hashtable的实际大小为0;此时,又要通过迭代器遍历Hashtable时,返回的是“空迭代器”的对象。
private static class EmptyIterator implements Iterator&Object& {
EmptyIterator() {
public boolean hasNext() {
return false;
public Object next() {
throw new NoSuchElementException(&Hashtable Iterator&);
public void remove() {
throw new IllegalStateException(&Hashtable Iterator&);
说明:&在详细介绍Hashtable的代码之前,我们需要了解:和Hashmap一样,Hashtable也是一个散列表,它也是通过“拉链法”解决哈希冲突的。
第3.1部分 Hashtable的“拉链法”相关内容
3.1.1 Hashtable数据存储数组
private transient Entry[]
Hashtable中的key-value都是存储在table数组中的。
3.1.2 数据节点Entry的数据结构
1 private static class Entry&K,V& implements Map.Entry&K,V& {
// 哈希值
// 指向的下一个Entry,即链表的下一个节点
Entry&K,V&
// 构造函数
protected Entry(int hash, K key, V value, Entry&K,V& next) {
this.hash =
this.key =
this.value =
this.next =
protected Object clone() {
return new Entry&K,V&(hash, key, value,
(next==null ? null : (Entry&K,V&) next.clone()));
public K getKey() {
public V getValue() {
// 设置value。若value是null,则抛出异常。
public V setValue(V value) {
if (value == null)
throw new NullPointerException();
V oldValue = this.
this.value =
return oldV
// 覆盖equals()方法,判断两个Entry是否相等。
// 若两个Entry的key和value都相等,则认为它们相等。
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
(value==null ? e.getValue()==null : value.equals(e.getValue()));
public int hashCode() {
return hash ^ (value==null ? 0 : value.hashCode());
public String toString() {
return key.toString()+&=&+value.toString();
从中,我们可以看出 Entry 实际上就是一个单向链表。这也是为什么我们说Hashtable是通过拉链法解决哈希冲突的。
Entry 实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数。这些都是基本的读取/修改key、value值的函数。
第3.2部分 Hashtable的构造函数
Hashtable共包括4个构造函数
1 // 默认构造函数。
2 public Hashtable() {
// 默认构造函数,指定的容量大小是11;加载因子是0.75
this(11, 0.75f);
7 // 指定“容量大小”的构造函数
8 public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
12 // 指定“容量大小”和“加载因子”的构造函数
13 public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity & 0)
throw new IllegalArgumentException(&Illegal Capacity: &+
initialCapacity);
if (loadFactor &= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException(&Illegal Load: &+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadF
table = new Entry[initialCapacity];
threshold = (int)(initialCapacity * loadFactor);
27 // 包含“子Map”的构造函数
28 public Hashtable(Map&? extends K, ? extends V& t) {
this(Math.max(2*t.size(), 11), 0.75f);
// 将“子Map”的全部元素都添加到Hashtable中
putAll(t);
第3.3部分 Hashtable的主要对外接口
3.3.1&clear()
clear() 的作用是清空Hashtable。它是将Hashtable的table数组的值全部设为null
1 public synchronized void clear() {
Entry tab[] =
modCount++;
for (int index = tab. --index &= 0; )
tab[index] = null;
count = 0;
3.3.2&contains()&和&containsValue()
contains() 和 containsValue() 的作用都是判断Hashtable是否包含“值(value)”
1 public boolean containsValue(Object value) {
return contains(value);
5 public synchronized boolean contains(Object value) {
// Hashtable中“键值对”的value不能是null,
// 若是null的话,抛出异常!
if (value == null) {
throw new NullPointerException();
// 从后向前遍历table数组中的元素(Entry)
// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
Entry tab[] =
for (int i = tab. i-- & 0 ;) {
for (Entry&K,V& e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
return false;
3.3.3&containsKey()
containsKey() 的作用是判断Hashtable是否包含key
1 public synchronized boolean containsKey(Object key) {
Entry tab[] =
int hash = key.hashCode();
// 计算索引值,
// % tab.length 的目的是防止数据越界
int index = (hash & 0x7FFFFFFF) % tab.
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry&K,V& e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
return false;
3.3.4&elements()
elements() 的作用是返回“所有value”的枚举对象
1 public synchronized Enumeration&V& elements() {
return this.&V&getEnumeration(VALUES);
5 // 获取Hashtable的枚举类对象
6 private &T& Enumeration&T& getEnumeration(int type) {
if (count == 0) {
return (Enumeration&T&)emptyE
return new Enumerator&T&(type, false);
从中,我们可以看出:
(01)&若Hashtable的实际大小为0,则返回“空枚举类”对象emptyEnumerator;
(02)&否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
我们先看看emptyEnumerator对象是如何实现的
1 private static Enumeration emptyEnumerator = new EmptyEnumerator();
3 // 空枚举类
4 // 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。
5 private static class EmptyEnumerator implements Enumeration&Object& {
EmptyEnumerator() {
// 空枚举类的hasMoreElements() 始终返回false
public boolean hasMoreElements() {
return false;
// 空枚举类的nextElement() 抛出异常
public Object nextElement() {
throw new NoSuchElementException(&Hashtable Enumerator&);
我们在来看看Enumeration类
Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。因为,它同时实现了 “Enumerator接口”和“Iterator接口”。
1 private class Enumerator&T& implements Enumeration&T&, Iterator&T& {
// 指向Hashtable的table
Entry[] table = Hashtable.this.
// Hashtable的总的大小
int index = table.
Entry&K,V& entry = null;
Entry&K,V& lastReturned = null;
// Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志
// iterator为true,表示它是迭代器;否则,是枚举类。
// 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
protected int expectedModCount = modC
Enumerator(int type, boolean iterator) {
this.type =
this.iterator =
// 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
public boolean hasMoreElements() {
Entry&K,V& e =
Entry[] t =
/* Use locals for faster loop iteration */
while (e == null && i & 0) {
e = t[--i];
return e != null;
// 获取下一个元素
// 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”
// 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
// 然后,依次向后遍历单向链表Entry。
public T nextElement() {
Entry&K,V& et =
Entry[] t =
/* Use locals for faster loop iteration */
while (et == null && i & 0) {
et = t[--i];
if (et != null) {
Entry&K,V& e = lastReturned =
entry = e.
return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
throw new NoSuchElementException(&Hashtable Enumerator&);
// 迭代器Iterator的判断是否存在下一个元素
// 实际上,它是调用的hasMoreElements()
public boolean hasNext() {
return hasMoreElements();
// 迭代器获取下一个元素
// 实际上,它是调用的nextElement()
public T next() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return nextElement();
// 迭代器的remove()接口。
// 首先,它在table数组中找出要删除元素所在的Entry,
// 然后,删除单向链表Entry中的元素。
public void remove() {
if (!iterator)
throw new UnsupportedOperationException();
if (lastReturned == null)
throw new IllegalStateException(&Hashtable Enumerator&);
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
synchronized(Hashtable.this) {
Entry[] tab = Hashtable.this.
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.
for (Entry&K,V& e = tab[index], prev = null; e != null;
prev = e, e = e.next) {
if (e == lastReturned) {
modCount++;
expectedModCount++;
if (prev == null)
tab[index] = e.
prev.next = e.
lastReturned = null;
throw new ConcurrentModificationException();
entrySet(), keySet(), keys(), values()的实现方法和elements()差不多,而且源码中已经明确的给出了注释。这里就不再做过多说明了。
3.3.5&get()
get() 的作用就是获取key对应的value,没有的话返回null
1 public synchronized V get(Object key) {
Entry tab[] =
int hash = key.hashCode();
// 计算索引值,
int index = (hash & 0x7FFFFFFF) % tab.
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry&K,V& e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return null;
3.3.6&put()
put() 的作用是对外提供接口,让Hashtable对象可以通过put()将“key-value”添加到Hashtable中。
1 public synchronized V put(K key, V value) {
// Hashtable中不能插入value为null的元素!!!
if (value == null) {
throw new NullPointerException();
// 若“Hashtable中已存在键为key的键值对”,
// 则用“新的value”替换“旧的value”
Entry tab[] =
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.
for (Entry&K,V& e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V old = e.
// 若“Hashtable中不存在键为key的键值对”,
// (01) 将“修改统计数”+1
modCount++;
// (02) 若“Hashtable实际容量” & “阈值”(阈值=总的容量 * 加载因子)
则调整Hashtable的大小
if (count &= threshold) {
// Rehash the table if the threshold is exceeded
index = (hash & 0x7FFFFFFF) % tab.
// (03) 将“Hashtable中index”位置的Entry(链表)保存到e中
Entry&K,V& e = tab[index];
// (04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。
tab[index] = new Entry&K,V&(hash, key, value, e);
// (05) 将“Hashtable的实际容量”+1
count++;
return null;
3.3.7&putAll()
putAll() 的作用是将“Map(t)”的中全部元素逐一添加到Hashtable中
1 public synchronized void putAll(Map&? extends K, ? extends V& t) {
for (Map.Entry&? extends K, ? extends V& e : t.entrySet())
put(e.getKey(), e.getValue());
3.3.8&remove()
remove() 的作用就是删除Hashtable中键为key的元素
1 public synchronized V remove(Object key) {
Entry tab[] =
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.
// 找到“key对应的Entry(链表)”
// 然后在链表中找出要删除的节点,并删除该节点。
for (Entry&K,V& e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) {
prev.next = e.
tab[index] = e.
V oldValue = e.
e.value = null;
return oldV
return null;
第3.4部分 Hashtable实现的Cloneable接口
Hashtable实现了Cloneable接口,即实现了clone()方法。
clone()方法的作用很简单,就是克隆一个Hashtable对象并返回。
1 // 克隆一个Hashtable,并以Object的形式返回。
2 public synchronized Object clone() {
Hashtable&K,V& t = (Hashtable&K,V&) super.clone();
t.table = new Entry[table.length];
for (int i = table. i-- & 0 ; ) {
t.table[i] = (table[i] != null)
? (Entry&K,V&) table[i].clone() : null;
t.keySet = null;
t.entrySet = null;
t.values = null;
t.modCount = 0;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
第3.5部分 Hashtable实现的Serializable接口
Hashtable实现java.io.Serializable,分别实现了串行读取、写入功能。
串行写入函数就是将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中
串行读取函数:根据写入方式读出将Hashtable的“总的容量,实际容量,所有的Entry”依次读出
1 private synchronized void writeObject(java.io.ObjectOutputStream s)
throws IOException
// Write out the length, threshold, loadfactor
s.defaultWriteObject();
// Write out length, count of elements and then the key/value objects
s.writeInt(table.length);
s.writeInt(count);
for (int index = table.length-1; index &= 0; index--) {
Entry entry = table[index];
while (entry != null) {
s.writeObject(entry.key);
s.writeObject(entry.value);
entry = entry.
21 private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
// Read in the length, threshold, and loadfactor
s.defaultReadObject();
// Read the original length of the array and number of elements
int origlength = s.readInt();
int elements = s.readInt();
// Compute new size with a bit of room 5% to grow but
// no larger than the original size.
Make the length
// odd if it's large enough, this helps distribute the entries.
// Guard against the length ending up zero, that's not valid.
int length = (int)(elements * loadFactor) + (elements / 20) + 3;
if (length & elements && (length & 1) == 0)
if (origlength & 0 && length & origlength)
Entry[] table = new Entry[length];
count = 0;
// Read the number of elements and then all the key/value objects
for (; elements & 0; elements--) {
K key = (K)s.readObject();
V value = (V)s.readObject();
// synch could be eliminated for performance
reconstitutionPut(table, key, value);
this.table =
第4部分 Hashtable遍历方式
4.1 遍历Hashtable的键值对
第一步:根据entrySet()获取Hashtable的“键值对”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter = table.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
// 获取key
key = (String)entry.getKey();
// 获取value
integ = (Integer)entry.getValue();
4.2 通过Iterator遍历Hashtable的键
第一步:根据keySet()获取Hashtable的“键”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
String key = null;
Integer integ = null;
Iterator iter = table.keySet().iterator();
while (iter.hasNext()) {
// 获取key
key = (String)iter.next();
// 根据key,获取value
integ = (Integer)table.get(key);
4.3 通过Iterator遍历Hashtable的值
第一步:根据value()获取Hashtable的“值”的集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
Integer value = null;
Collection c = table.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
value = (Integer)iter.next();
4.4 通过Enumeration遍历Hashtable的键
第一步:根据keys()获取Hashtable的集合。
第二步:通过Enumeration遍历“第一步”得到的集合。
Enumeration enu = table.keys();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
4.5 通过Enumeration遍历Hashtable的值
第一步:根据elements()获取Hashtable的集合。
第二步:通过Enumeration遍历“第一步”得到的集合。
Enumeration enu = table.elements();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
遍历测试程序如下:
1 import java.util.*;
* @desc 遍历Hashtable的测试程序。
(01) 通过entrySet()去遍历key、value,参考实现函数:
iteratorHashtableByEntryset()
(02) 通过keySet()去遍历key,参考实现函数:
iteratorHashtableByKeyset()
(03) 通过values()去遍历value,参考实现函数:
iteratorHashtableJustValues()
(04) 通过Enumeration去遍历key,参考实现函数:
enumHashtableKey()
(05) 通过Enumeration去遍历value,参考实现函数:
enumHashtableValue()
* @author skywang
18 public class HashtableIteratorTest {
public static void main(String[] args) {
int val = 0;
String key = null;
Integer value = null;
Random r = new Random();
Hashtable table = new Hashtable();
for (int i=0; i&12; i++) {
// 随机获取一个[0,100)之间的数字
val = r.nextInt(100);
key = String.valueOf(val);
value = r.nextInt(5);
// 添加到Hashtable中
table.put(key, value);
System.out.println(& key:&+key+& value:&+value);
// 通过entrySet()遍历Hashtable的key-value
iteratorHashtableByEntryset(table) ;
// 通过keySet()遍历Hashtable的key-value
iteratorHashtableByKeyset(table) ;
// 单单遍历Hashtable的value
iteratorHashtableJustValues(table);
// 遍历Hashtable的Enumeration的key
enumHashtableKey(table);
// 遍历Hashtable的Enumeration的value
//enumHashtableValue(table);
* 通过Enumeration遍历Hashtable的key
private static void enumHashtableKey(Hashtable table) {
if (table == null)
System.out.println(&\nenumeration Hashtable&);
Enumeration enu = table.keys();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
* 通过Enumeration遍历Hashtable的value
private static void enumHashtableValue(Hashtable table) {
if (table == null)
System.out.println(&\nenumeration Hashtable&);
Enumeration enu = table.elements();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
* 通过entry set遍历Hashtable
private static void iteratorHashtableByEntryset(Hashtable table) {
if (table == null)
System.out.println(&\niterator Hashtable By entryset&);
String key = null;
Integer integ = null;
Iterator iter = table.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
key = (String)entry.getKey();
integ = (Integer)entry.getValue();
System.out.println(key+& -- &+integ.intValue());
* 通过keyset来遍历Hashtable
private static void iteratorHashtableByKeyset(Hashtable table) {
if (table == null)
System.out.println(&\niterator Hashtable By keyset&);
String key = null;
Integer integ = null;
Iterator iter = table.keySet().iterator();
while (iter.hasNext()) {
key = (String)iter.next();
integ = (Integer)table.get(key);
System.out.println(key+& -- &+integ.intValue());
* 遍历Hashtable的values
private static void iteratorHashtableJustValues(Hashtable table) {
if (table == null)
Collection c = table.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
System.out.println(iter.next());
第5部分 Hashtable示例
下面通过一个实例来学习如何使用Hashtable。
1 import java.util.*;
* @desc Hashtable的测试程序。
* @author skywang
8 public class HashtableTest {
public static void main(String[] args) {
testHashtableAPIs();
private static void testHashtableAPIs() {
// 初始化随机种子
Random r = new Random();
// 新建Hashtable
Hashtable table = new Hashtable();
// 添加操作
table.put(&one&, r.nextInt(10));
table.put(&two&, r.nextInt(10));
table.put(&three&, r.nextInt(10));
// 打印出table
System.out.println(&table:&+table );
// 通过Iterator遍历key-value
Iterator iter = table.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
System.out.println(&next : &+ entry.getKey() +& - &+entry.getValue());
// Hashtable的键值对个数
System.out.println(&size:&+table.size());
// containsKey(Object key) :是否包含键key
System.out.println(&contains key two : &+table.containsKey(&two&));
System.out.println(&contains key five : &+table.containsKey(&five&));
// containsValue(Object value) :是否包含值value
System.out.println(&contains value 0 : &+table.containsValue(new Integer(0)));
// remove(Object key) : 删除键key对应的键值对
table.remove(&three&);
System.out.println(&table:&+table );
// clear() : 清空Hashtable
table.clear();
// isEmpty() : Hashtable是否为空
System.out.println((table.isEmpty()?&table is empty&:&table is not empty&) );
(某一次)运行结果:
table:{two=5, one=0, three=6}
next : two - 5
next : one - 0
next : three - 6
contains key two : true
contains key five : false
contains value 0 : true
table:{two=5, one=0}
table is empty
Java基础——HashTable源码分析
HashTable的实现原理分析
HashTable和HashMap的区别详解
HashTable的使用和原理
HashMap和Hashtable的实现原理
Hashtable 的实现原理
【数据结构】HashTable原理及实现学习总结
hashmap与Hashtable实现原理浅析
HashTable实现原理
没有更多推荐了,}

我要回帖

更多关于 集合的概念 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信