这是什么接口硬盘sata接口 既不是IDE 也不是sata 在网上查不到

RT主板4个SATA接口就一块硬盘sata接口还一個光驱硬盘sata接口和光驱随便插在哪个接口上都行么有什么影响么?我现在硬盘sata接口接在SATA!光驱开始接在SATA4后来我把光驱改在SATA3没发现什么问题那么光驱改在... RT 主板4个SATA接口 就一块硬盘sata接口 还一个光驱 硬盘sata接口和光驱随便插在哪个接口上 都行么有什么影响么?

我现在硬盘sata接口接在SATA! 光驅开始接在SATA4 后来我把光驱改在SATA3 没发现什么问题

那么光驱改在SATA2呢硬盘sata接口不接在SATA1呢?会有什么不一样么 影响电脑启动么 影响Ghost安装系统么

硬盘sata接口和光驱随便插在哪个接口上都行,没什么影响

实际使用过程中,接在那个SATA接口都不会影响硬盘sata接口启动引导进入系统。

比如說有四个接口,你接的最后一个电脑的在启动的时候,会搜索第一个没有硬盘sata接口,在往后搜索搜索到第四个,有硬盘sata接口开始引导系统启动。

光驱改在SATA2硬盘sata接口不接在SATA1,就是电脑搜索的时间长几毫秒不会影响Ghost安装。

无论主盘接入到哪一个接口都可以在BIOS中嘚高级选项列表中找到SATA控制器并查询相应接口的信息。

并且无论接入到哪一个接口都可以成为主盘只需要在启动选项列表中选择相应的優先项即可。即使是外挂的USB接口也可以成为系统盘

值得注意的是,如果是双硬盘sata接口情况就不一样了硬盘sata接口的前后顺序放错,有可能进不了系统就是一直在进入系统的那里卡着,没有反应

当然,你不分前后也是可以的只不过需要在主板 bios 里边调整一下硬盘sata接口启動顺序。

知道合伙人数码行家 推荐于

爱好计算机曾经任职于联想服务站,电信装维班组 现在待业,希望能在百度知道平台帮助到更多嘚人


不是必须要接在主板的第一个SATA接口上。现在主流的主板一般有4-6个SATA接口

实际使用过程中,接在那个SATA接口都不会影响硬盘sata接口启动引导进入系统。

但是将硬盘sata接口接在第一个SATA接口相对来说可以减少主板寻找硬盘sata接口的的时间,从而相对来说加快硬盘sata接口引导进入系統的速度

如果有多块硬盘sata接口同时使用,就要注意主板上SATA接口的编号了系统盘尽量接在编号为1的接口上,这样可以优先使用尤其是哆块硬盘sata接口里都有系统的时候更要注意,要按照SATA接口的编号顺序连接

固态硬盘sata接口开始较大范围的使用,玩家也更加在乎硬盘sata接口的實际读写速度如果将固态硬盘sata接口连接在主板的SATA 2接口则会按照SATA 2的速度传输数据,严重影响硬盘sata接口的性能发挥也会影响用户的使用体驗。

在连接硬盘sata接口时同样要注意很多新的主板设计的全部是SATA 3的接口,不过还有部分主板既有SATA 3也有SATA 2连接硬盘sata接口时就不能简单地连接SATA 3,而要优先选择SATA 3接口

主板的SATA接口乱插都可以,没什么影响的所谓的系统硬盘sata接口接到SATA 1接口上被主板更快检测到,开机快点点吧

不过用咣驱装系统时如果光驱不是插在主板上的SATA 1接口的话就要进BIOS将光驱改成第一启动项如果不设置开机可能识别不到系统光盘

所有 SATA 接口的地位嘟是平等的,因此硬盘sata接口可以连接到任何一个接口上(除非你的主板有两组接口分别支持 SATA II 与 SATA III 两种模式。在这种情况下两组接口不是哃一种颜色,例如有的主板有四个接口支持 SATA II另有两个接口支持 SATA III,这时肯定不宜将 SATA III 硬盘sata接口接到那组仅支持 SATA II 的接口上 )

另外,需要引导系统的硬盘sata接口调换了接口后必须进入 BIOS 到 Boot 页面下检查第一启动设备是否还是这块硬盘sata接口,特别在有多个硬盘sata接口的情况下BIOS 可能不会洎动将需要启动的硬盘sata接口设置到第一顺序。

我在设备管理器发现的是ide控制器 ide不是老式硬盘sata接口的么我的bios默认设置 硬盘sata接口好像是什么兼容模拟模式 就是把sata硬盘sata接口 当成ide硬盘sata接口用 我之前改过 改成sata 但是进不了系统 为什么呢 SATA 影响ghost备份还原系统么
 1、在设备管理器显示的是ide控制器,说明主板上的硬盘sata接口控制器运行于兼容模式下当然这样不能充分发挥 SATA 硬盘sata接口的优越性,但不会影响使用
2、在 BIOS 里将硬盘sata接口设置为 SATA 模式,很可能就启用了 AHCI 模式(不同主板有所不同有的主板在 SATA 模式下可以不启用 AHCI)。如果启用了AHCI 模式当然是最理想的,可以充分发揮 SATA 硬盘sata接口的性能(现在的新型4K扇区先进格式化硬盘sata接口也要求必须启用 AHCI 模式否则将运行缓慢),但对 Ghost 方法确实有影响甚至根本无法鼡 Ghost 安装系统,这与 Ghost 软件版本以及 Ghost 安装盘的制作者有关
3、由于 Ghost 安装系统是一种非正常的安装方法,因此对于不同的磁盘模式、不同的新型號的硬盘sata接口甚至不同的主板,其兼容程度也大不相同在 XP 时代用 Ghost 也许是一个好方法,但在 Win7 时代会遇到许多新的问题,还是不用为好
}
不过就我的看法SATA应该性能更佳。
SCSI需要的是稳定
sas不要转接吧,是scsi的sata接口啊兼容现在的sata接口的
}

E、潮流的SATA与前卫的SATA II硬盘sata接口之间到底有着什么样的区别?几种不同的硬盘sata接口各自价格等方面又是怎么样相信很多朋友都想知道。

在深入了解新标准之前有必要回顧一下原有的技术。长期以来硬盘sata接口技术的进步,都着重于传输速度和容量两个方面基本上认识电脑以来,大家就一直在使用Ultra ATA这種延用已久的接口技术,有好些方面都显得过时而需要改进了:

大家都知道数据线太粗,安装不方便严重影响机箱内空气流通,不利於机箱散热是传统IDE接口即Ultra ATA硬盘sata接口的至命缺点。不过IDE硬盘sata接口还有很多其它方面的局限性,大概就不是很多人都清楚了

普遍情况下,一块主板只有两个IDE接口每个接口可以挂两个IDE设备。但同一个接口的两个设备是共用带宽的对速度的影响非常大。所以稍有常识的人都会把硬盘sata接口和光驱分开两条IDE线连接到主板上

这样,IDE有个很大的问题就是虽然一块主板可以连接4个设备,但事实上只要超过两个速度就大大下降。

更大的问题是同一条线上两个设备要严格按主/从设置才能正常运行。象图中这种西数WD400 JB主硬盘sata接口还有两种不同设置,一条IDE线只接这块硬盘sata接口的时候按右边的设置带从盘的时候则要按中间的设置方式。据亲身经验如果没带从盘而按中间的方式设了,会出现五花八门百思不得其解的问题——有时可以启动有时报告找不到硬盘sata接口,有时启动过程中报告硬盘sata接口错误之类——每次启動可能出现不同的问题

并行ATA在支持设备热插拔方面能力有限,这一点对服务器方面的应用非常重要因为服务器通常采用RAID的方式,任何┅块硬盘sata接口坏了都可以热拔插更换而不影响数据的完整性,确保服务器任何情况下都正常开着具有热插拔支持功能的SCSI和光纤通道占據了企业级应用的几乎全部市场,并行ATA空有价格优势而不能获得一席之地主要原因就是它不支持热拔插。

不够完善的错误检验技术

Ultra DMA引入叻基于CRC的数据包出错检测该技术是ATA-3标准的组成部分。但是没有任何一种并行ATA标准提供命令和状态包的出错检测。尽管命令和状态包出錯的范围和几率都小但它们出错的可能性也不容忽略。

处理器核心从几个方面要求向低电压过渡较低电压允许更快的信号陡变,这对提高速度、降低热耗至关重要现在的CPU核心电压基本上都小于2伏,为保持与系统主板上其它芯片的互操作性通常使用3.3伏的外部电压分离絀来,5伏电压成为过时的标准虽然大部分目前的 ATA/ATAPI-6标准为并行ATA设备指定的直流电压供应为3.3V (± 8%),但一些模式的接收器大于4伏所以要使鼡过时的5伏电压。

另外Ultra ATA是受并行总线特性的限制,带宽容易受到限制经过多次升级,目前最高传输率也只是133M字节/秒

SATA比IDE优越在哪些地方?

SATA不再使用过时的并行总线接口转用串行总线,整个风格完全改变

SATA与原来的IDE相比有很多优越性,最明显的就是数据线从80 pin变成了7 pin而苴IDE线的长度不能超过0.4米,而SATA线可以长达1米安装更方便,利于机箱散热除此之外,它还有很多优点:

一对一连接没有主从盘的烦恼

每個设备都直接与主板相连,独享150M字节/秒带宽设备间的速度不会互相影响。

热拔插对于普通家庭用户来说可能作用不大但对于服务器却昰至关重要。事实上SATA在低端服务器应用上取得的成功,远比在普通家庭应用中的影响力大

SATA提高了错误检查的能力,除了对CRC对数据检错の外还会对命令和状态包进行检错,因此和并行ATA相比提高了接入的整体精确度使串行ATA在企业RAID和外部存储应用中具有更大的吸引力。

SATA的信号电压最高只有0.5伏低电压一方面能更好地适应新平台强调3.3伏的电源趋势,另一方面有利于速度的提高

SATA不依赖于系统总线的带宽,而昰内置时钟刚推出的这一代SATA内置1500MHz时钟,可以达到150M字节/秒的接口带宽由于不再依赖系统总线频率,每一代SATA升级带宽的增加都是成倍的:丅一代300M字节/秒再下一代可以达到600M字节/秒

SATA仍然存在的几点不足

在国内,现在买IDE的人恐怕比买SATA的人多很多主要有三个方面的原因:

首先,SATA嘚诸多先进性总体上对个人电脑用户意义不是太大它最大的意义的反而是适应了入门级企业应用的需要。

其次nForce4、915之前的那些主板使用SATA硬盘sata接口,在安装操作系统的时候需要用到软盘就象SCSI硬盘sata接口那样,增添了用户的麻烦

另外,国内用户的电脑配置相对落后很多人嘟是旧电脑升级大容量硬盘sata接口,稍老点的主板还不支持SATA硬盘sata接口

所以,SATA最大的成功在于吸引了很多低端入门级服务器的用户但在企業级应用方面,它又仍然在很多方面有待改进:

SATA毕竟只是ATA它的机械底盘是为8x5线程设计的,而SCSI的机械底盘是24x7多线程设计能更好地满足服務器多任务的需要。所以SATA虽然在单任务的测试中不比SCSI差但面对大数据吞吐量的服务器,还是有差距的除了速度之外,面对多任务数据讀取硬盘sata接口磁头频繁地来回摆动,使硬盘sata接口过热是SATA最大的问题

在实际应用中,RAID硬盘sata接口阵列是由多个硬盘sata接口组成的必须知道具体哪一块硬盘sata接口坏了,热拔插更换才有意义SATA硬盘sata接口虽然可以热拔插,但SATA组成的阵列在某块硬盘sata接口损坏的时候不能象SCSI、FC和SAS那样,具有SAF-TE机制用指示灯显示知道具体坏的是哪一块,热拔插替换的时候如果取下的是好硬盘sata接口,就容易使数据出错所以在实际应用Φ,SATA的热拔插功能有点形同虚设的味道

SATA相对于SCSI和FC速度慢,主要原因是机械底盘不同不适应服务器应用程序大量非线性的读取请求。所鉯SATA硬盘sata接口用来做视频下载服务器还不错用在网上交易平台则力不从心。

SATA 1.0控制器的传输速度效率不高虽然标称具有150MB/s的峰值速度,事实仩最快的SATA硬盘sata接口速度也只有60MB/s

虽然SATA硬盘sata接口相对于SCSI硬盘sata接口来说很便宜,但整个的SATA方案并不便宜主要原因是SATA 1.0控制器的每个接口只能连接一个硬盘sata接口,8个硬盘sata接口组成的阵列需要8个接口把每个接口300多元的花费算进去,就不便宜了

很多人到现在都还不是太清楚SATA与Ultra ATA相比囿什么区别与好处,这也难怪因为连Intel刚推出SATA的时候,也没想到这个为个人用户而改进的方案结果会在入门级服务器和工作站等企业应鼡的前前景更为广大——也正因为这样,2004年才专门成立了SATA IO(SATA国际组织)

前面那么多介绍,是结合现实情况与SATA官方白皮书整理的从中已經可以发现,说到SATA优缺点更多的是从企业应用而不是个人与家庭应用的角度考虑的。

现在经常听到“NCQ硬盘sata接口”和“SATA II硬盘sata接口”这两个洺词它们是SATA向下一代——SATA II发展的两个不同阶段的产品:

第一阶段是在SATA的基础上加入NCQ原生指令排序、存储设备管理(Enclosure Management)、底板互连、数据汾散/集中这四项新特性。

第二阶段是在第一阶段的基出上作进一步改进加入了双宿主主动式故障替换、与多个硬盘sata接口高效连接、3.0Gb(即300MB/s)接口带宽等特性。

“NCQ硬盘sata接口”的改进:不仅仅是NCQ这么简单

由于SATA II的第一阶段几项改进中NCQ原生指令排序技术对个人用户意义比较大,所鉯也只有这一项技术比较多人了解其实SATA II第一阶段加入的技术包括如下几项:

传统台式机硬盘sata接口都用线性形式处理请求,这种方式潜在佷不好的方面要理解其中原理,必须对硬盘sata接口物理结构有个基本了解硬盘sata接口里面是圆盘状的,很象CD光盘每一个圆盘由许多同心圓划分为一条条磁道,磁道又分出扇区每个圆盘由一个或多个磁头负责读取。如果数据分布在同一磁道寻找数据的速度是最快的。在鈈同磁道之间移动则消耗很多时间假设要读取三块数据,其中一块在圆盘最外边的磁道上一块在圆盘最里面的磁道上,还有一块在圆盤最外边的磁道上传统的硬盘sata接口,会依次先读取圆盘最外面的数据然后读取最里面的数据,最后再回头读取最外面的数据这样一來,磁头移来移动消耗的寻道时间多效率就低了。如果把磁头移动减到最少寻道时间就会相应减少。这就是NCQ的目的所在——NCQ可以重新編排指令不让磁头从外移到内再移到外,而是在移向圆盘内圈之前就读取外圈的两块数据

现在大家应该明白了,CPU的速度对硬盘sata接口性能影响微乎其微但NCQ技术则可以明显改善硬盘sata接口性能,特别是对前面提到的SATA多线程性能差、容易磁头频繁来回摆动、硬盘sata接口容易过热這些方面有很大改善

前面提到SATA的热拔插技术,由于阵列中有一块硬盘sata接口出现故障的时候不知道具体坏的是哪一块而形同虚设。SATA II第一階段即拥有NCQ技术的SATA硬盘sata接口加入了机架管理技术,正是用来解决这一问题的

SATA用于数据发送的导线数量很小,因而出现了为外部RAID使用而蔀署的底板

该底板是一块物理线路板,通常集成到机架的后面板上上面嵌入了通过刻在线路板上的导线连接到中心控制器插件的多个設备接头。值得注意的是中心控制器与主机的接口可以按任意一种协议来设计,可以是SCSI、光纤通道或iSCSI底板的使用可使设备咬住接头并緊密结合。

当然受到FR4材质信号衰减的限制,中心控制器和SATA设备接头之间蚀刻线路的最大长度必须限制在18英寸以内虽然这种限制表面上局限了底板端子和SATA机架的设计,而事实上标准机架为19英寸宽,因此在一个1U到3U的机架内,为SATA而蚀刻的最大导线长度足以从一个位置适中嘚中心控制器连接到所有设备接头

首先,是接口带宽从原来的150MB/s扩展到了300MB/s但SATA II不能与300MB/s划等号,因为它包含了SATA II第一阶段的NCQ等技术以及更多嘚其它技术:

其次,SATA II可以通过Port Multiplier让每一个SATA接口可以连接4-8个硬盘sata接口,即主板有4个SATA接口可以连接最多32个硬盘sata接口。

另外还有一个非常有趣的技术,叫Dual host active fail over它可以通过Port Selector接口选择器,让两台主机同时接一个硬盘sata接口这样,当一台主机出现故障的时候另一台备用机可以接管尚為完好的硬盘sata接口阵列和数据,这就确保服务器不管在某块硬盘sata接口损坏或是某坏CPU之类的其它配件损坏的情况下,仍能正常运作

结语:给个人电脑用户的特别提示

最后,相信大家对IDE、SATA、NCQ、SATA II已经有了比较整体的认识或许很多关于服务器方面的技术还不太明白,其实这没關系最重要的是获得这样一个概念:SATA、SATA II的改进,大多数不是为个人电脑用户而设的

SATA对个人电脑用户真正有意义的地方,也就是让机箱散热更加良好但与此同时,如果你的主板不支持SATA II在获得这样一个好处的同时,安装windows操作系统会比较麻烦——需要插入SATA的驱动软盘所鉯IDE用户千万别以为SATA更先进,改用更先进的SATA硬盘sata接口会有多大的性能提升

使用支持NCQ技术的硬盘sata接口,对喜欢同时运行很多个程序的用户可能会有速度上的改进而且由于磁头比较少来回摆动,硬盘sata接口会比较长寿温度也会比较低。但前面没有提到的一个必要前提是必须主板和硬盘sata接口都支持NCQ技术才起作用。

至于SATA II唯一对个人电脑用户有意义的就是300MB/s的带宽——当然,SATA II全都是支持NCQ的不过千万别指望带宽比原来增加了一倍,就可以获得接近于SATA两倍的速度因为目前硬盘sata接口的速度主要是受硬盘sata接口内部数据传输率的限制,而不在于接口带宽接口带宽的增加对个人用户带来的速度改善,是微乎其微的同样,SATA II的好处——支持NCQ和300MB/s的带宽必须要主板支持,在只支持SATA I的主板上使鼡SATA II硬盘sata接口就连“微乎其微”的改善也不会有。

总体来说SATA、NCQ以至完整的SATA II,对一般个人电脑用户的意义不是非常大它们最大的意义在於为企业应用提供了SCSI、FC之外的廉价存储解决方案——当然如果几种硬盘sata接口的价格相差很小的话,尽可能选最先进的SATA II是没错的如果担心噺技术会不成熟存在某些未知缺陷,继续选择SATA I硬盘sata接口甚至是IDE硬盘sata接口也是相当不错的方案。

除了工作频率和数据位宽的提升PCI-X 总线也囿更为先进的解释和传送数据的方式,效率更高共有五个关键技术帮助它完成任务:

2. 分离事务(多任务)

3. 减少时钟周期的占用(等待状態)

4. 128 位标准尺寸数据块

5, 增强了奇偶错误管理

下面我们就来一一解释一下:

特征段可能是最重要的技术,它增加了追踪穿过总线的数据的能仂可以把它在队列中向前移动,增强并行穿越总线的能力每件 PCI-X 总线上的事务都附带一个 36 位的特征域。这个域包含了一些信息有事务從哪儿开始,它需要按什么顺序插入事务有多长和是否需要缓冲检测。特征段包含四个部分:序列信息、不严格的次序结构、事务字节數量以及“非缓存一致”事务。 (1) 序列信息

这是特征段的一部分它详细说明了事务来自什么地方,哪种总线整个事务有多大。它将在整个特征段要被引用并且有助于提高总线管理的效率。

(2) 不严格的次序结构

最初的 PCI 体系处理数据的方式类似于“令牌环”网络因为它没囿办法说明哪儿一起特定事务发生在什么地方,必须按照特定的顺序接收和传送数据它从第一组总线(0)出发,经过每一个插槽然后開始下一组总线(1),再继续直到它又达到第一组总线这样它才不会迷路和丢失事务。

PCI-X 有一个“不严格次序”位一旦控制器和设备驱動程序设置了该位,就允许一件事务获得超过所有其它目前在总线中的事务的优先权这样 PCI-总线或者 PCI-PCI 桥接器可以根据那儿有内存空间,或鍺那个设备可用来重新排列总线上的事务通过这种方法,系统可以利用 PCI-X 总线实现效率最大化

在 PCI V2.2 规范中,没有办法知道哪个请求最大洇此,每次数据请求都分配两条高速缓存队列这种情况在 PCI-X 中不会出现。在特征段中包含了下次请求提取的字节数量就象你从互联网上丅载文件时,它会报告已经收到了多少数据还剩多少数据需要下载一样,每个事务都有一个字节数量统计还剩多少字节的数据。这样高速缓存的使用效率更高,桥接器也不需要一直保留事务等待缓存队列清空了

(4) “非缓存一致”事务

要很清楚的描绘出处理器缓存和系統内存里到底发生了些什么是一件非常困难的工作,多处理器系统就更不用说了处理器和 I/O 子系统之间的需要保持视图的事务被称为“缓存一致”事务。PCI 总线在把数据写到处理器缓存之前先使用了一个“探测”循环来扫描以重载数据。尽管这个过程非常短但还是会争夺帶宽而导致性能问题。 只要驱动器和控制器能够支持PCI-X 在特征段中使用了一个“无探测”位。这被称为“非缓存一致”事务取消了“探測”扫描,总线排除了处理器-内存总线上的任何额外工作

2. 分离事务(多任务)

分离事务允许一个正在向某个特定目标设备请求数据的设備,在目标设备准备好发送数据之前处理来临的其它任何事情在目前的 PCI 体系中,请求将停止处理新的数据直到与它的目标之间的数据处悝完毕换句话说,它一次只能处理一条请求

3. 减少时钟周期的占用(等待状态)

当设备正在等待来自其它设备的信号或者数据时,这些處于等待状态时消耗的额外的时钟周期都了白白浪费了的根据前面的描述,利用分离事务能够消除这种消耗另外一个消除等待状态的辦法是把没有准备好发送数据的设备从总线上移走。这样做总线带宽可以腾出来供其它事务使用。减少等待状态的数量可以最佳化地利用总线。

4. 128-位标准尺寸数据块

如果接收的数据是标准化的处理器的工作效率就更高。Intel 的 IA-64 处理器使用自然排列的 128-位指令现在 PCI-X 也采用了同樣的方法。通过总线的数据都是同样大小的块这样就提供了更多的流水线机制,改善了处理器的管理

5, 增强了奇偶错误管理

当主板超频の后,在当前的 PCI 环境下奇偶错误是最大的烦恼。正如前面所说的当你提升了时钟速度之后,相应地就减少了总线上设备译解请求的时間所以,出现奇偶错误的可能性就大大增加了最糟糕的情况下,将出现不可修复的错误锁住总线只有重新启动才能解决问题。

PCI-X 在提高了时钟频率的同时减少了问题的发生而且通过增加指令数来解释和管理它们所遇到的错误。如果操作系统和 PCI-X 驱动程序都支持奇偶错误管理问题可能会在产生更严重的后果之前被解决。这些增强包括错误是通知用户重复执行指令,重置适配器在适配器失败前将之关閉。最坏的情况下可能没有选择只有重新启动了,但这些增强可以减少此类情况的发生

PCI-X沿袭了标准PCI的许多技术特色在原有技术的基礎上增加了许多新的技术特征。首先就是64-BIT数据位宽仅此一项就可以提升一倍的带宽,然后PCI-X的工作频率为133MHz是旧式PCI总线33MHz工作频率的4倍,也是传统64-BIT PCI 66MHz工作频率的两倍!数据位宽是原来的两倍工作频率是原来的四倍,合算起来PCI-X就能够提供旧式PCI总线8倍的带宽!PCI-X沿袭了標准PCI的许多技术特色,在原有技术的基础上增加了许多新的技术特征首先就是64-BIT数据位宽,仅此一项就可以提升一倍的带宽然后PCI-X的笁作频率为133MHz,是旧式PCI总线33MHz工作频率的4倍也是传统64-BIT PCI 66MHz工作频率的两倍!数据位宽是原来的两倍,工作频率是原来的四倍合算起来,PCI-X就能够提供旧式PCI总线8倍的带宽!

PCI协议标准 --总线数据位宽 --总线工作频率 ---理论最大带宽

}

我要回帖

更多关于 硬盘sata接口 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信