数电设计除了蜂鸣器音腔设计还有其他会叫的元件吗

数电课程设计篮球比赛计时器
本回答由提问者推荐
var sogou_ad_id=731547;
var sogou_ad_height=160;
var sogou_ad_width=690;怎么实现由定时器控制蜂鸣器发声设计
由定时器控制蜂鸣器发声设计。              
设计要求:(1)同时用两个定时器控制蜂鸣器发声,定时器0控制率,定时器1控制同个频率持续的时间,间隔300ms依次输出1,10,50,100,200,400,800,1000(Z)的方波。          (2)用Keil C51及Proteus进行设计、仿真。设计目的:(1)掌握单片机定时器的工作原理及应用;         (2)了解蜂鸣器的工作原理;         (3)理解频率对蜂鸣器的声调的影响。
09-11-18 &匿名提问
二.系统软件设计 图4 系统程序流程图2.1 系统程序流程图 系统程序流程图如图4所示。2.2 温度部分软件设计 DS18B20的一线工作协议流程是:初始化→ROM操作指令→存储器操作指令→数据传输。其工作时序包括初始化时序、写时序和读时序。故主机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。程序主要函数部分如下: (1)初始化函数 //读一个字节函数 ReadOneChar(void) {unsigned char i=0; unsigned char dat = 0; for (i=8;i&0;i--) { DQ = 0; // 给脉冲信号 dat&&=1; DQ = 1; // 给脉冲信号 if(DQ) dat|=0x80; delay(4);} return(dat);} //写一个字节函数 WriteOneChar(unsigned char dat) {unsigned char i=0; for (i=8; i&0; i--) {DQ = 0; DQ = dat&0x01; delay(5); DQ = 1; dat&&=1;}} (2)读取温度并计算函数 ReadTemperature(void) {unsigned char a=0; unsigned char b=0; unsigned int t=0; float tt=0; Init_DS18B20(); WriteOneChar(0xCC); // 跳过读序号列号的操作 WriteOneChar(0x44); // 启动温度转换 Init_DS18B20(); WriteOneChar(0xCC); //跳过读序号列号的操作 WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器) 前两个就是温度 a=ReadOneChar(); b=ReadOneChar(); t=b; t&&=8; t=t|a; tt=t*0.0625; t= tt*10+0.5; //放大10倍输出并四舍五入---此行没用 (3)主程序部分见前 return(t);} 三. 结束语 AT89C2051单片机体积小、重量轻、抗干扰能力强、对环境要求不高、价格低廉、可靠性高、灵活性好。即使是非电子计算机专业人员,通过学习一些专业基础知识以后也能依靠自己的技术力量来开发所希望的单片机应用系统。 本文的温度控制系统只是单片机广泛应用于各行各业中的一例,相信读者会依靠自己的聪明才智使单片机的应用更加广泛化。另外对本例子可以作一些扩展,单片机的应用越来越广泛,由于单片机的运算功能较差,往往需要借助计算机系统,因此单片机和PC机进行远程通信更具有实际意义。目前此设计已成功应用于钻井模拟器实验室室温控制。 本文作者创新观点:采用的单片机AT89C2051性价比高,而且温度传感器DS18B20转化温度的方法非常简洁且精度高、测试范围较广。 参考文献 [1]林伸茂.8051单片机彻底研究基础篇 北京:人民邮电出版社 2004 [2]范风强等.单片机语言C51应用实战集锦 北京:电子工业出版社 2005 [3]谭浩强.C语言程序设计(第二版) 北京:清华大学出版社 1999 [4]夏路易等.电路原理图与电路板设计教程 北京:北京希望电子出版社 2002 [5]赵晶.Protel99高级应用 北京:人民邮电出版社 2000 [6]聂毅.单片机定时器中断时间误差的分析及补偿[J] 微计算机信息 ):37~38
请登录后再发表评论!
《电子课程设计》课程简介课程名称电子课程设计  课程编号 03s009  课程英文名称:课程性质   必修       学时/学分1周/1   适用专业   自、电、通、计   大纲执笔人曾建唐   大纲审核人李  洋     先修要求   电路分析、模拟电子技术、数字电子技术(数字逻辑)一、内容提要及学习收获: 电子课程设计是电类专业学生重要基础实践课是工科专业的必修课。经过查资料、选方案、设计电路、撰写设计报告、使学生得到一次较全面的工程实践训练。理论联系实际,提高和培养创新能力,为后续课程的学习,毕业设计,毕业后的工作打下基础。同时,结合EDA 技术,进行仿真设计,可以体现现代化的设计方法和理念,使电子课程设计在培养学生能力方面,得到比较大的提高。二、教学方式:教师指导与学生设计相结合,以学生独立设计为主。三、教材或参考书:教材:《电工电子基础实践教程》曾建唐等编  机械工业出版社  (“十五”国家级规划教材)2003年四、学生成绩评定方法:1.设计方案的正确性         占30%;2.设计说明书内容及规范程度占30%;3. EDA仿真                占20%;4.答辩                     占20%。总成绩按优、良、中、及格不及格五级分制给出(1、2、4内容缺一,按不及格处理)。
根据设计题目,可以到里搜索相关设计论文也可以到各大电子设计类论坛去看看
《电子制作》1998年12期  
 一种小巧的触摸式音响防盗报警器 --------------------燃气报警器在日本的应用来源:天天加油  更新时间: 化学化工论文燃气报警器在日本的应用。 摘要:燃气泄漏报警器在日本的发展已途30年,30年来, 日本政府和生产企业大力推广报警器的使用、使燃气泄漏和爆炸等事故的事故率远远低于欧美等发达国家。燃气报警器已成为了家庭生活的必需品。本文简述了燃气报警器在日本的发展历史和现状、介绍了燃气报警器的种类和日本政府的有关规定。1前言 日本使用液化石油气始于1952年。70年代燃气用户急剧增长、到现在用户已达23,295,000户,然而家用燃气报警器在70年代才开始推广。据统计,1970年一年共发生将近800起燃气事故。随着日本燃气的普及,家用燃气报警器的研制、开发和销售发展迅速,现在已有99.1%的液化石油气用户(包括管道和瓶装)装上报警器。据1998年资料显示。每年与液化石油气有关的事故仅发生75起。而城市燃气管道用户发生事故率更低,在全国22,418,186户城市燃气管道用户中一年发生事故仅为16起,燃气报警器普及率也达到了89.8%,可以说,家用燃气报警器已成为日本家庭生活的必需品。2日本应用燃气报警器的历史2.1日本第一台燃气报警器的诞生 60年代、日本九洲大学清山哲郎教授在进行氧化物催化剂研究时发现,氧化物半导体的电导宰随环境中还原性气体的浓度而变化、反过来利用这一现象。便可通过测定氧化物半导体的电导率检测环境中的还原性气体的浓度,这就是人类最初的气体传感器、清山教授因此被人们尊称为“化学传感器之父”。不久,日本的田口先生又完全独立地发现这一科学现象,他在氧化物中添加微量的铂和把等贵金属、经过高温烧结制成半导体材料、它就是现在半导体传感器的关键元器件。气体传感原理被发现后不久,很快在1963年5月、 由日本新宇宙电机株式会社开发出了第一台接触燃烧式家用燃气泄漏报警器,次年12月改良产品问 世。命名为“电子燃气报警器”,这时的报警器已经可 以检测燃气、一氧化碳等气体,可以安装在浴室或者 采用集中监视、从功能上讲,已经较适合家庭使用了。随着研究的不断深入,1969年2月, 日本的科研 人员又开发出了世界上第一台半导体式家用燃气泄漏报警器。半导体式与接触燃烧式相LL,具有成本低、灵 敏度高、寿命长、不易与硫、氯等元素化合而失敏等 优点,应用前景更广泛。2.2日本政府对燃气报警器的有关规定1980年8月的一天,在日本中部静冈县某地下商 业街、发生了大爆炸、在场的不少顾客受到伤害,当 救援和消防人员进入现场又发生第二次爆炸,死伤人 员共达213名。该事故的原因虽然至今仍未断定是由 燃气泄漏引起还是由地下自然产生的沼气引起的,但 是,这次事故加速了当时日本政府对公共场所安装燃 气报警器义务化工作的进程。日本政府对相关的法律, 比如液化石油气法、燃气事业法、消防法和建筑基准 法等进行了重新研究和修订,最终于1981年2月,正 式提出了对“公寓、居民大楼等公共住宅、非特定多 数人进出的设施、建筑物以及地下街”等地点的燃气 报警器的义务安装。日,在静冈县一所娱乐场所野餐 餐厅发生一起液化石油气爆炸事故,顾客和餐厅职员 有14人死亡、27人受伤,这是日本液化石油气历史上 另一次重大的爆炸事件,震动了全国液化气行业、同 时也引起日本政府的高度重视,政府以此为契机,与 液化石油气行业携手加强行业的安全措施、其中最主 要的就是全力致力于推广报警器。2.3燃气报警器的安装场所在日本的《液化石油气法》、《燃气事业法》、《消防法》以及《建筑基难法》等各种掖律法规中根据燃气的种类、规定必须在以下建筑物中、有灶具的房间都必须安装。 (1)特定地下街、特定地下室; (2)其他种类的地下室(如:地下仓库、地窖等); (3)集体宿舍(如:公寓式住宅、公寓大楼等); (4)餐馆饮食店等建筑物;a.剧场、电影院、公众会堂等类似的场所;b.夜总会、游乐场等类似的场所;c.宴会会场以及餐馆、餐厅等饮食店;d.百货商场及超级市场;e.旅馆、酒店; f.医院、门诊; g.幼儿园、学校等各种校舍; h.图书馆、博物馆、美术馆;i.公共浴室 j.车站、码头及机场等类似场所;k.神社、寺院、教会等类似场所; l.室内面积超过1000平方米的事务所。(5)高层建筑(高度在60米以上的); (6)燃气管道的穿墙管部分。3燃气报警器的普及与宣传 日本为了大力普及和宣传燃气报警器,于1986年元月,官民共同组织“安全的液化石油气燃具普及谈心会”发起了“安全的液化石油气燃具普及达到100%”的活动,直至1993年7月,燃气报警器普及率达到95.8%,基本实现了“将燃气事故减少到1/5”。图1是1981年至1998年燃气报警器普及率与事故件数、死亡人数的统计。图中数据是根据日本的LPG联合会调查以及日本 通产省的LPG事故统计数字得出来的。很明显,随着 LPG报警器普及率的增长,燃气爆炸事故及死亡人数 是逐年下降的。但是,一氧化碳中毒事件及死亡人数却未因燃气 报警器的普及呈现减少趋势。1989年9人死于一氧化碳中毒,1990年7人、1991年8人、1992年16人。1993 年5月,在日本中部山梨县一座避暑山庄发生因大型 热水器排气管不完备而发生一氧化碳中毒事件,造成 7人死亡的惨案。如何防止一氧化碳中毒成为安全使 用液化石油气的又一个重要课题。一次又一次血的教 训加速了“防止不完全燃烧中毒的燃气报警器”的研 制和开发。 4日本燃气报警器工业会 在推广燃气报警器的初期,日本企业有过一段困 难时期。不少燃气报警器厂家片面地追求高灵敏度的传感器,造成报警器过于敏感,很多消费者投诉“怎 么回事,我买的报警器遇到香烟会叫,遇到煤气反而不叫,质量不行啊!”……,这些“质量”问题的出现,一度使人们对报警器失去了信心。面对这种情况, 生产厂商们开始讨论有关燃气的行业标准,1970年, 由日本高压气保安协会制定出了统一标准并负责检定, 至此,报警器行业的发展才开始步入了正轨。 为了在一般家庭、餐厅等地推广使用报警器及其 联动装置,提高报警产品得质量,确保消费者的安全, 1975年12月、由22家日本Rl日企业又联合组成了“日本燃气报警器工业会”。工业会的成立,促进了企业与政府机构的交流, 促使了报警器及相关行业的发展。工业会中有不少是 大家熟悉的,如:富士电机株式会社、费加罗技研株 式会社和新宇宙电机株式会社等,其中费加罗、新宇宙公司已分别在我国的天津和上海两地成立了合资公 司、日本先进的燃气报警产品正逐渐走人中国的家庭。5日本燃气报警器的种类及特点5.1燃气报警器 按报警器测试的气种分类,有用于检测各种煤气 的“全气种”报警器,有用于检测比空气轻的“轻质气”(如:天然气、煤制气)报警器,也有用于检测比空气重的“重质气”(如:液化石油气)报警器。所以在选用和安装燃气报警气时,一定要明确燃气的气质和使用环境。从报警气结构分类,有以下几种:5.1.1一体式报警器 指气体传感器和报警蜂鸣器组装在同一个外壳内的报警器。带输出端子的报警器可以控制切断阀、户外蜂鸣器、小型马达等联动装置。—体式报警器安装简单,价格较便宜、适合安装在个别住宅、小规模场所。其报警的形式通常是蜂鸣声,也有语音报警,还有闪光等报警,这是为方便听力有问题的用户。5.1.2分离式报警器 指气体传感器和报警蜂鸣器未组装在同—个外壳内的报警器、气体传感器部分称检测器,报警蜂鸣器部分称报警器,两者是通过信号线相连的。 检测器有耐湿防滴等外壳设计,可以在经常溅到水的地方,如厨房、浴室以及地井等处设置。 带有信号输出的分离式报警器还可以与切断阀等装置联动。5.1.3外部报警式报警器(户外蜂鸣器联动式) 由一体式报警器驱动户外蜂鸣器动作,当室内的报警器延续一定时间报警(约20至60秒)后,户外安装的报警器就会鸣响,这样、可以让第三者也知道户内有煤气泄漏。另外,户外蜂鸣器也有通电指示灯,当室内的报警器插头脱落时,户外蜂鸣器会显示“消灯”。这样,第三者就可以判断户内的报警器情况了。5.1.4集中监示型报警器 多部一体式报警器、分离式报警器以及在管理室设置的监示盘,通过信号线相连,构成集中监示型报警器。在特定的地下街、特定的地下室中要求安装这种报警器。末端的报警器与集中监示盘也可以通过中继器相连。在某个报警器检测到煤气后,在一定时间内连续鸣响,通过集中监示盘表示出该报警器所在的场所有煤气泄漏。另外,在报警器掉电的时候、集中监示盘还能发出故障报警。在特定地下街和特定地下室等场所设置的集中监示盘均应有后备电池,另外,还必须设置非常电源、声音报警装置以及燃气泄漏指示灯。5.1.5吸引式报警器在埋地煤气管附近埋设燃气收集简,通过吸引装 置对简内气体进行监测,当埋地煤气管出现泄漏,检 测部分即能监测到泄漏、这时,报警器会发出报警,并 且将信号送到控制或切断装置上。5.1.6不完全燃烧报警器(CO感应器)随试着测试目的延伸,又发展于燃气泄漏火灾报 警装置、不完全燃烧报警器(CO感应器)。5.2报警器联动安全系统 5.2.1煤气泄漏报警切断装置这种装置由报警器、控制器以及切断阀组成。 当报警器连续25秒至60秒蜂鸣后、 由控制器判断 出煤气泄漏、并将阀门关阀信号输出到切断阀,并 关闭气源。也有控制部分与报警器组装在一起的, 另外、切断阀有与煤气流量表做成一体的,也有在 表外管道上安装的。5.2.2对讲系统附加功能 在楼宁的对讲系统上,附加上燃气泄漏报警功能, 或在澡党、浴室的对讲系统中附加上紧急情况通报功 能(防止CO中毒),将各种异常情况通过声音和光在 对讲机上表示出来。 5.2.3燃气泄漏的情况经电话线路,在保安中心、集中 监示中心等出反应出来,当住户不在家时,保安人员 就可以通知煤气公司出动紧急抢救。 6日本燃气报警器发展近况与其他产品一样、随着社会环境的变化,科技的进步、燃气报警器的技术也不断发展,现在、日本的燃气报警产品从功能和结构上比过去的又有了较大的 提高。 目前,在日本将防止爆炸用传感器、防止不完全 燃烧(CO)传感器以及防止火灾用传感器结合起来的 复合型报警器正逐步普及。最近在日本,因房屋建材或涂料等散发出的有 害化学物质对人体造成伤害的案件急速增加, 日本 的科研人员正在研制能够及时感应这些化学物质的 报警器、这种报警器能以音乐通知主人房间空气受 到污染。并及时打开排风扇。还有,因喷射杀虫剂等会造成误报警的“防止误报型报警器”等新款产品也陆续问世。-----------------
智能防盗防火报警器的开发研究  
 摘要:介绍一种采用8031单片机研制而成该报警器配用相应的标准保安探可以实现防开启、防接近、防玻璃破碎、防火灾,介绍了该报警器的主要功能及.详细阐述该报警器的工作原理、硬件和软件j经过开发阶段理论分析及,证明此设计方案合理,产品,性可取代同类进口产品。
关键词:单片机 可编程 自动报警 低功耗设计
1 概述   随着经济的发展,人们对防盗防火保安设备的需求量大为增加,为了满足用户需求,作者用国内器材研制成一种功能先进、实用、成本低廉的智能防盗防火防警器。   该智能报警器专门为银行、商场、金库、机要室、仓库等有特殊保安要求的用户而开发研究的,也适用于家庭保安。   该报警器配用相应的标准保安探头,可以实现防开启、防接近、防玻璃破碎、防火灾等全面的保安1由于该报警器中应用单片机技术和现代化电子技术,保安功能全部可由用户设置与修改。用户可根据各自特定的保安要求,通过小键盘设置组成各种高质量的专用保安系统。   该报警器是有线保安报警器,报警方式为警筒、警灯。以下就该报警器的功能、工作原理、硬件及软件设计作进一步阐述。 2 主要功能及特点 (1)内装式预警蜂鸣器可做24h防盗音响恐吓和键盘操作提示。外接大功率高音警戒音响。 (2)监控8个保安警戒防区,每个防区可按用户要求自由设置10项保安功能,并有100万组可修改的密码封锁,保密性强。 (3)多项可由用户操作使用的可编程保安报警器功能有: 编程密码设置与修改; 警戒密码设置与修改; 进入时间设置与修改; 退出时间设备与修改; 报警延时时间设置与修改; 探头触发时间设置与修改; 定时自动警戒时间与修改; 临时警戒密码设置与修改; 快速警戒功能; 警戒防区设置与修改(1~8防区自由组态)。 (4)防区探头线路和警戒情况由机箱的红、绿双色指示灯显示,各防区独立互不干扰,并且报警指示有记忆能力。 (5)防区探头设计成常开、常闭组合式线路,防破坏能力强。 (6)用户全部操作集中在4×4数字键盘上完成。 (7)交流/直流(浮充)供电,交流供电由专用指示灯显示。 3 工作原理及硬件电路设计 3.1硬件电路的组成   该报警主要由8031单片机、8155可编程并行i/o扩展接口、eprom2732、时钟电路、74臼373、74ls244、4×4键盘、8个红绿双色指示灯、蜂鸣器、警笛、输入信号预处理电路、探头网络组成。硬件电路组成的结构框图如图1所示。   报警器以8031单片机为控制核心,通过可编程接口芯片8155对单片机的i/0接口进行扩展川,可监控8个警戒防区且有对应的皿d指示灯来表明防区工作状态。4×4键盘是由单片机8031的p1口组成行列式扫描阵列,通过软件实现键识别川,进行人机对话操作。 3.2 输入信号预处理电路设计   传感器探头网络输出为正常/开路/短路三态输出信号,三态输出使探头网络具有防破坏能力。如图2所示。预处理电路为二态输出信号:正常/报警(0/1)。   可见预处理信号为三态输入、二态输出。其输入输出波形如图3所示。
   本设计选用低功耗、高性能、低造价的比较器(ic为四比较器lm339)合成方法实现了系统要求的预处理信号。一片该芯片可以完成2个防区输入信号的预处理功能。 3.3 低功耗设计   该报警器是专门保安控制器,可靠性是设计重点。为防止市电供电遭到破坏导致保安事故,电源设计成交流供电/直流浮充式备份的复合供电结构。由于受直流供电能够维持足够长的有效保安时间,提出低功耗设计的特殊要求。   低功耗电气设计已经通过芯片选型实施在硬件结构析各个部分,这里仅对报警器中用电“大户”led灯进行特殊设计。 设计中全部led采用共地接法。利用单片机接口读人交流电信号acs,利用四d的驱动集成块74ls240/74凶244门控端g,控制全部皿d,其控制逻辑为: acs=1(有交流电),g=1(皿d灯亮) acs=0(交流失电),g=1(皿d灯灭) led低功耗电路如图4所示。 为能在ac掉电时仍能用izd显示报警器的工作状态,要求软件设计控制四d在键盘操作和报警时恢复g=0,这样的设计既能够保证降低交流失电时的功能,又不影响皿d的显示功能。 4 软件设计 4.1 软件设计基本任务 (1)用户保安功能编程; (2)对警戒防区实时监控报警; (3)防误报处理; (4)低功耗功能软件实现。 4.2 软件模块化设计   为了便于分析与设计,本软件设计采用结构化程序设计方法,各功能程序实现模块化、子程序化。全部程序包括:主程序、ctc0中断服务程序、ctc1中断服务服务程序,皆由mcs-51汇编语言编制。   主程序由初始化模块、键盘扫描处理程序、用户编程模块、警戒防区监控模块组成。主程序框图如图5所示。   ctc0中断服务程序执行ctc1发计数脉冲任务。ctc0作为定时器,ctc1作为计数器,ctc0和ctc1联合产生20m时基周期[3]。   ctc1中断服务程序由实时时钟计时模块、防误报处理模块、报警模块、低功耗处理模块组成。 5 结束语   该报警器的最大特点是对重要、集中的保安区域实现保险库式的计算机智能化电子警戒。该报警器经过专家鉴定并投入市场使用。经过开发阶段、调试、运行不同时期考验,证明此设计方案合理,产品性能可靠、成本低廉、可取代同类进口产品。  
我提供一个“楼道照明节电开关”论文供参考:&BR/&附件:&a href=&/browse/download.php?path=/91/44/73/..doc&filename=声光控节电开关的设计论文.doc& target=&_blank&&声光控节电开关的设计论文.doc&/a&
请登录后再发表评论!
一、设计目的1. 熟悉集成电路的引脚安排。2. 掌握各芯片的逻辑功能及使用方法。3. 了解面包板结构及其接线方法。4. 了解数字钟的组成及工作原理。5. 熟悉数字钟的设计与制作。二、设计要求1.设计指标时间以24小时为一个周期;显示时、分、秒;有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间;计时过程具有报时功能,当时间到达整点前5秒进行蜂鸣报时;为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。2.设计要求画出电路原理图(或仿真电路图);元器件及参数选择;电路仿真与调试;PCB文件生成与打印输出。3.制作要求 自行装配和调试,并能发现问题和解决问题。4.编写设计报告 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。三、设计原理及其框图1.数字钟的构成数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。图 3-1所示为数字钟的一般构成框图。图3-1 数字钟的组成框图⑴晶体振荡器电路  晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。⑵分频器电路  分频器电路将32768Hz的高频方波信号经32768()次分频后得到1Hz的方波信号供秒计数器进行计数。分频器实际上也就是计数器。⑶时间计数器电路  时间计数电路由秒个位和秒十位计数器、分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器、分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为12进制计数器。⑷译码驱动电路  译码驱动电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。⑸数码管  数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管,本设计提供的为LED数码管。2.数字钟的工作原理1)晶体振荡器电路晶体振荡器是构成数字式时钟的核心,它保证了时钟的走时准确及稳定。图3-2所示电路通过CMOS非门构成的输出为方波的数字式晶体振荡电路,这个电路中,CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。输出反馈电 阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确。晶体XTAL的频率选为32768HZ。该元件专为数字钟电路而设计,其频率较低,有利于减少分频器级数。从有关手册中,可查得C1、C2均为30pF。当要求频率准确度和稳定度更高时,还可接入校正电容并采取温度补偿措施。由于CMOS电路的输入阻抗极高,因此反馈电阻R1可选为10MΩ。较高的反馈电阻有利于提高振荡频率的稳定性。非门电路可选74HC00。图3-2 COMS晶体振荡器2)分频器电路通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,需要对振荡器的输出信号进行分频。通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现。例如,将32768Hz的振荡信号分频为1HZ的分频倍数为3),即实现该分频功能的计数器相当于15极2进制计数器。常用的2进制计数器有74HC393等。本实验中采用CD4060来构成分频电路。CD4060在数字集成电路中可实现的分频次数最高,而且CD4060还包含振荡电路所需的非门,使用更为方便。CD4060计数为14级2进制计数器,可以将32768HZ的信号分频为2HZ,其内部框图如图3-3所示,从图中可以看出,CD4060的时钟输入端两个串接的非门,因此可以直接实现振荡和分频的功能。图3-3 CD4046内部框图3)时间计数单元时间计数单元有时计数、分计数和秒计数等几个部分。时计数单元一般为12进制计数器计数器,其输出为两位8421BCD码形式;分计数和秒计数单元为60进制计数器,其输出也为8421BCD码。一般采用10进制计数器74HC390来实现时间计数单元的计数功能。为减少器件使用数量,可选74HC390,其内部逻辑框图如图 2.3所示。该器件为双2—5-10异步计数器,并且每一计数器均提供一个异步清零端(高电平有效)。图3-4 74HC390(1/2)内部逻辑框图秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可。CPA(下降没效)与1HZ秒输入信号相连,Q3可作为向上的进位信号与十位计数单元的CPA相连。秒十位计数单元为6进制计数器,需要进制转换。将10进制计数器转换为6进制计数器的电路连接方法如图3-5所示,其中Q2可作为向上的进位信号与分个位的计数单元的CPA相连。图3-5 10进制——6进制计数器转换电路分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的Q3作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的Q2作为向上的进位信号应与时个位计数单元的CPA相连。时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为12进制计数器,不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行12进制转换。利用1片74HC390实现12进制计数功能的电路如图3-6所示。另外,图3-6所示电路中,尚余-2进制计数单元,正好可作为分频器2HZ输出信号转化为1HZ信号之用。图3-6 12进制计数器电路4)译码驱动及显示单元计数器实现了对时间的累计以8421BCD码形式输出,选用显示译码电路将计数器的输出数码转换为数码显示器件所需要的输出逻辑和一定的电流,选用CD4511作为显示译码电路,选用LED数码管作为显示单元电路。5)校时电源电路当重新接通电源或走时出现误差时都需要对时间进行校正。通常,校正时间的方法是:首先截断正常的计数通路,然后再进行人工出触发计数或将频率较高的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可。根据要求,数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。图3-7所示即为带有基本RS触发器的校时电路,图3-7 带有消抖动电路的校正电路6)整点报时电路一般时钟都应具备整点报时电路功能,即在时间出现整点前数秒内,数字钟会自动报时,以示提醒。其作用方式是发出连续的或有节奏的音频声波,较复杂的也可以是实时语音提示。根据要求,电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,报时电路报时控制信号。报时电路选74HC30,选蜂鸣器为电声器件。四、元器件1.实验中所需的器材5V电源。面包板1块。示波器。万用表。镊子1把。剪刀1把。网络线2米/人。共阴八段数码管6个。CD4511集成块6块。CD4060集成块1块。74HC390集成块3块。74HC51集成块1块。74HC00集成块5块。74HC30集成块1块。10MΩ电阻5个。500Ω电阻14个。30p电容2个。32.768k时钟晶体1个。蜂鸣器。2.芯片内部结构图及引脚图图4-1 7400 四2输入与非门 图4-2 CD4511BCD七段译码/驱动器图4-3 CD4060BD 图4-4 74HC390D&图4-5 74HC51D 图4-6 74HC303.面包板内部结构图面包板右边一列上五组竖的相通,下五组竖的相通,面包板的左边上下分四组,每组中X、Y列(0-15相通,16-40相通,41-55相通,ABCDE相通,FGHIJ相通,E和F之间不相通。五、个功能块电路图1. 一个CD4511和一个LED数码管连接成一个CD4511驱动电路,数码管可从0---9显示,以次来检查数码管的好坏,见附图5-1。图5-1 4511驱动电路2. 利用一个LED数码管,一块CD4511,一块74HC390,一块74HC00连接成一个十进制计数器,电路在晶振的作用下数码管从0—9显示,见附图5-2。图5-2 74390十进制计数器3. 利用一个LED数码管,一块CD4511,一块74HC390,一块74HC00和一个晶振连接成一个六进制计数器,数码管从0—6显示,见附图5-3。图5-3 74390六进制计数器4. 用一个六进制电路和一个十进制连接成一个六十进制电路,电路可从0—59显示,见附图5-4图5-4 六十进制电路5. 利用两个六十进制的电路合成一个双六十进制电路,两个六十进制之间有进位,见附图5-5。图5-5 双六十进制电路6. 利用CD4060、电阻及晶振连接成一个分频——晶振电路,见附图5-6。图5-6 分频—晶振电路7. 利用74HC51D和74HC00及电阻连接成一个校时电路,见附图5-7。图5-7 校时电路8. 利用74HC30和蜂鸣器连接成整点报时电路。见附图5-图5-8 整点报时电路9. 利用两个六十进制和一个十二进制连接成一个时、分、秒都会进位的电路总图,见附图5-9。
请登录后再发表评论!}

我要回帖

更多关于 蜂鸣器音腔设计 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信