跪求基于单片机的多路电子气压检测仪仪论文,不要钱的有吗???

您现在所在的是:
传感器论坛
→ 浏览主题:
* 帖子主题:
jiang_0514
文章数:881
年度积分:53
历史总积分:3244
注册时间:
作者:韩中华 王长涛 张楠 沈阳建筑大学信息与控制工程学院 & &转贴自:电子产品世界
引言
  
当前,随着采矿技术的不断发展,井下作业的安全越来越有保障,但是仍然有许多采矿企业的机械化程度低,对现场采矿的工作人员的生命安全造成潜在的威胁,特别是针对瓦斯气体的检测和报警仍旧存在隐患,每年由于瓦斯泄露造成的特大事故依然很多。瓦斯是在成煤过程中形成并大量储存与煤层之中的气体,是煤矿井下危害最大的气体。瓦斯是一种无色无味的气体,主要成份是甲烷(CH4),密度为0.716kg/ m3,对人体的危害是超时限能引起人窒息死亡。在地下采矿时候,井内常常会泄露一定量的CH4、CO和SO2等气体,后一种含量少,切易溶于水。经煤矿开采时的喷水处理后变成酸。但前两种气体含量多,且几乎不容于水,属于易燃易爆气体。
  
由于瓦斯气体本身的危险性和对人民生产生活造成的巨大危害,因此对瓦斯气体的检测和报警是一项必要的工作。瓦斯报警是指利用气体传感器技术,将检测到的瓦斯气体浓度和标准值进行比较,当高过一定浓度值时候进行相应的声光报警,提醒正在作业的人员进行相应的处理,组织人员撤离或对矿井通风排气,避免不安全事故的发生,对现在采矿业的安全起着非常重要的作用。笔者所设计一种低成本的可燃性气体报警器设计,能够监控矿井的瓦斯气体的浓度,显示测量结果,并对当前的环境状态做出判断,发出报警信息。
系统功能设计
系统设计
  
本设计的瓦斯气体报警器由六个部分组成:传感器、LCD显示器、声光报警器、控制电路、A/D转换和电源模块,传感器部分采用的气体传感器能感知环境中某种气体并将与气体种类和浓度有关的信息转换成电信号。这种电信号是连续变化的模拟信号需要经过A/D转换将其转化离散的数字信号。控制电路以单片机为核心,能够对采集的数字信号进行处理和判断,运用一定的算法计算出待检测气体成分及浓度并送到LCD显示器显示出来。当检测气体浓度超出设定报警阀值时给出声光报警。本系统可以对检测的数据和设定的阀值参数进行存储并自备电源。系统框图如图1所示。
图1总体功能框图
  
根据使用环境对产品设计的便携型要求,控制电路的核心元件采用了AT89LV51低电压单片机,传感器采用MQ5气体传感器,为减少单片机端口的占用和进一步扩展其它功能A/D转换部分采用TI公司的TLC1543,LCD显示采用的是dm12232f,A/D转换和LCD都是通过串行方式与单片机相连接,声光报警器电路使用的是蜂鸣器和发光二极管进行报警,这种设计可以满足不同场合的应用,测试结果稳定可靠,10位TLC1543的A/D转换芯片能够满足系统测量的精度要求。系统电路如图2所示。
图2 系统电路图
  
系统采用AT89LV51单片机作为控制部分的核心,AT89LV51是ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4K bytes的可反复擦写的只读程序存储器(PEROM)和128bytes的随机存储器(RAM),兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,AT89LV51可在2.7~6.0V电源电压下工作。A/D转换部分的核心器件TLC1543有三个控制输入端CS、I/O CLOCK、ADDRESS和一个数据输出端DATA OUT遵循串行外设接口SPI协议。51系列单片机未内置SPI接口,但通过软件模拟SPI协议即可。硬件方面将TLC1543的CS、I/O CLOCK、ADDRESS、DATA OUT、EOC五个端口与AT89LV51的5个I/O口相连接。报警模块单独采用了蜂鸣器作为声音报警装置,提醒使用人员当前的气体浓度已经超过了警戒线,应该立即停止工作,进行相应的处理,避免危险发生。它和液晶显示器的配合使用,可以有效地提醒工作人员身边的工作环境,帮助工作人员提高安全警惕。在报警模块的电路中当P0.7口的电平是低电平时候,三极管截止;当P0.7口电平为高时候,三极管导通,蜂鸣器产生报警声音。
  
本设计中,由于瓦斯气体的主要成分是甲烷,所以气体传感器采用的是MQ-5,它适用于家庭或工业上对液化气,甲烷(天然气),煤气的监测装置。它具有优良的抗乙醇,烟雾干扰能力,具有对液化气,天然气,城市煤气有较好的灵敏度;对乙醇,烟雾几乎不响应; 快速的响应恢复特性;长期的使用寿命和可靠的稳定性;简单的测试电路等优点。其结构和外形如图3所示。
图3 MQ-5的结构和外形
  
MQ-5气敏元件的结构和外形如图3所示(结构A或B),由微型AL2O3陶瓷管、SnO2敏感层,测量电极和加热器构成的敏感元件固定在塑料或不锈钢制成的腔体内,加热器为气敏元件提供了必要的工作条件。封装好的气敏元件有6只针状管脚,其中4个用于信号取出,2个用于提供加热电流。
  
设计中MQ-5的接线如图4所示,在实际的测量中,可以按照其等效电路来计算相应的校正数值,其中Ro表示的是测量气体在腔体内的等效电阻,RL是外接负载电阻,用来调整输出的模拟量电压范围,具体数值应根据A/D转换器的输入范围来确定,在TLC1543的输入范围是0~5V,这样RL可调整至该范围,保证测量的量程足够用。
图4 MQ-5的等效电路
气体测试结果计算
  
对于传感器的调整参数计算,可按照表1步骤并结合该传感器的特性表进行调整。
表1甲烷测试计算
其中:RL=20KΩ;Ro=14.43KΩ;C=86;RL—负载电阻;Ro—敏感体电阻;C—常数,调整显示范围。
  
在灵敏度调整过程中,由于MQ-5型气敏元件对不同种类,不同浓度的气体有不同的电阻值。因此,在使用此类型气敏元件时,灵敏度的调整是很重要的,建议用1000ppm异丁烷或氢气校准传感器。
  
结语
  
本设计考虑携带方便,而且实用的报警器,成品可以很方便的嵌入在矿灯内部,设计成本廉价。基于单片机矿灯用的智能瓦斯报警器设计在硬件的选择上留有空间,在增加相关硬件同时,软件部分只需改动很少的部分就可实现其它功能,使系统功能更加完善。A/D转换器是11通道的,可以扩展其他传感器,如矿井内的温度和湿度进行监测的传感器。并且系统可以扩展无线发射模块,将检测的信息及时地发到安全控制中心,在配合其它矿井内的安全监控设备更好的确保井下作业的安全。
参考文献:
[1] 郑义,陈俊.用AT89C52和TLC1543实现数据采集系统.电子世界,-25
[2] 卢丽君. 基于TLC1543的单片机多路采样监测系统的设计.仪器仪表与分析监测,-7
[3] 潘天红, 陈山. 11通道10位A_D转换器TLC1543及在单片机系统中应用.微计算机信息,):64-66
[4] 王幸之,钟爱琴,王雷,王闪.AT89系列单片机原理与接口技术.北京:北京航空航天大学出版社,~19
[5]王新贤.通用集成电路速查手册.济南:山东科学技术出版社,
[6] 王化详,张淑英.传感器原理及应用.天津:天津大学出版社,4~153
[7] 求是科技.单片机典型模块设计实例导航.北京:人民邮电出版社,~106
[8] 李光飞.单片机课程设计实例指导.北京:北京航空航天大学出版社,~142
jiang_0514
文章数:881
年度积分:53
历史总积分:3244
注册时间:
气体传感器发展方向的深度分析
近年来,由于在工业生产、家庭安全、环境监测和医疗等领域对气体传感器的精度、性能、稳定性方面的要求越来越高,因此对气体传感器的研究和开发也越来越重要。随着先进科学技术的应用,气体传感器发展的趋势是微型化、智能化和多功能化。深入研究和掌握有机、无机、生物和各种材料的特性及相互作用,理解各类气体传感器的工作原理和作用机理,正确选择各类传感器的敏感材料,灵活运用微机械加工技术、敏感薄膜形成技术、微电子技术、光纤技术等,使传感器性能最优化是气体传感器的发展方向。
新气敏材料与制作工艺的研究开发
& & &
对气体传感器材料的研究表明,金属氧化物半导体材料Zn0,SIlo2,Fe203等己趋于成熟化,特别是在C比,C2H5OH,CO等气体检测方面。现在这方面的工作主要有两个方向:一是利用化学修饰改性方法,对现有气体敏感膜材料进行掺杂、改性和表面修饰等处理,并对成膜工艺进行改进和优化,提高气体传感器的稳定性和选择性;二是研制开发新的气体敏感膜材料,如复合型和混合型半导体气敏材料、高分子气敏材料,使得这些新材料对不同气体具有高灵敏度、高选择性、高稳定性。由于有机高分子敏感材料具有材料丰富、成本低、制膜工艺简单、易于与其它技术兼容、在常温下工作等优点,已成为研究的热点。
新型气体传感器的研制
& & &
用传统的作用原理和某些新效应,优先使用晶体材料(硅、石英、陶瓷等),采用先进的加工技术和微结构设计,研制新型传感器及传感器系统,如光波导气体传感器、高分子声表面波和石英谐振式气体传感器的开发与使用,微生物气体传感器和仿生气体传感器的研究。随着新材料、新工艺和新技术的应用,气体传感器的性能更趋完善,使传感器的小型化、微型化和多功能化具有长期稳定性好、使用方便、价格低廉等优点。
气体传感器智能化
& & &
随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。
jiang_0514
文章数:881
年度积分:53
历史总积分:3244
注册时间:
基于HPX气压传感器的高度测量
来源:微计算机信息
用气压传感器进行高度测量在现代飞行器上有着广泛的应用,主要是通过测量飞行器所在的气压来计算出飞行器的飞行高度。霍尼韦尔公司有一些高精度气压传感器(如HPA、PPT等)已经用于飞行器高度的测量,且集成了必要的补偿模块,以RS232或RS485作为输出接口,使用极为方便。但是这些传感器属于美国对我国出口的限制产品,并且极为昂贵,很难普及使用。而HPX是霍尼韦尔(Honeywell)今年三月份刚刚推出的一款气体压力传感器,它具有价格较低、精度较高、易购买等特点,因此如果能用它实现高度测量具有广阔的应用前景。
二、HPX气体压力传感器特性描述
HPX系列是一种微结构压力传感器,它仅仅只是一个的传感器,没有集成信号调理和模数转换电路,其外形也比较简明,如下图1,其主要特性如下:
图1.HPX系列压力传感器的简图
1、HPX系列压力传感器提供精确、低成本的传感装置,它有两种不同的封装形式:DIP(双列式封装)和SOIC(小型集成电路)
2、表压型装置采用6插针双列式封装,绝压型采用8插针表面贴装小型集成电路。两种传感器都是非放大型和未校准的。用户可为HPX系列传感器配备放大和信号调整电路,以满足特定的应用要求。
3、这些易于使用的传感器的特点是采用惠斯通电桥结构,硅压敏电阻技术和比例输出,具有可证实的应用灵活性,结构简单性,并易于最终产品的制造。
4、使用干传感器设计的仪器装置应该用于非腐蚀性、非电离的工作流体,如空气和各种干气体等。HPX的技术性能特性——表压型(双列式封装)
5、HPX的技术性能特性——表压型(双列式封装)
注:
1.基准条件(除非另有说明):供电电压,Vs=3.0 ± 0.01 Vdc; Ta=25 ℃ [77°F]。在供电电压(Vs)范围内,输出为比例型的。
2.温度系数为-20℃和100℃ [-4 °F和212 °F]间的标准值。
3.量程为特定压力下的输出电压与零压力下的输出(电压)间的代数差。量程与供电电压成比例。
4.从0 psi至满量程压力的响应时间逐步改变,为10%至90%的上升时间。
从以上HPX系列气压传感器的性能可以看到HPX的精度高、分辨率高、重复性好,并且该传感器系列具有不同的量程范围,可以根据不同的环境和要求选用特定的型号。本文选用量程范围为30psi的HPX030GD,用于测量0~5Km的高度,要求精度±30m,分辨率1m。
三、传感器信号的放大调理与AD转换
1、由于HPX气压传感器的输出的是60±20mV的模拟信号,所以必须对其进行调理,然后进行A/D转换,变成数字信号送处理器处理。因为信号比较小,在A/D之前必须把信号放大,这里选用一款价格低的高精度放大集成电路块MAX1452,它是高度集成的高精度信号放大调理器,它具有抗干扰能力强、工作温度范围大、对信号放大进行优化等特性。下面是它用于调理和放大非线性信号的典型电路(图2)。
图2. 调理和放大非线性信号的典型电路
2、调整MAX1452把HPX给出的模拟信号放大100倍,这样信号就变成6±2V完全可以经行A/D转换了。根据测量要求,测量范围0 -5Km,分辨率为1m,通过计算可以知道此处的A/D转换器需要16位的。另外考虑到高空经常会使仪器在零度以下工作,应选择工作温度范围较大的模数转换器,对转换速度没有特别要求。AD676可以满足以上要求。
四、压-高转换的数据处理方法
1、压-高转换的物理原理和工程应用
通常都知道地球大气层中空气的单位面积力就是大气压力它一成不变地随着离开地面距离的增加而减少海平面以上高度与空气压力的关系按下列等式确定:
式中:P是自由气流静压;g是重力加速;WM是空气的分子重量;R是通用的气体常数;T是绝对温度;Z是海平面以上的几何高度
上式给出了地球上大气压力和几何高度的数学换算关系,但是在实际的工程应用中并不能精确实时的得到上述关系中的输入参数量,如空气的分子重量WM &绝对温度T等。《美国标准大气压1976(2)》对压力与高度的比值提供有完善的数据表列,设计人员可将其装进仪表存储器中这些数据考虑到了重力加速度变化情况和温度对大气压的影响。在实际的压-高转换工程应用中大多以美国标准大气压表为转换表。
2、数据处理实现方法
把《美国标准大气压1976(2)》给出的压-高转换表结合实际要求得到压-高转换列表,把该列表存入ROM中,将A/D转换后的数据输入处理器,处理器只要根据大气压力的数值运用查表算法查询ROM就可以得到高度值了。
本文所做的测量要求是:测量0~5Km的高度,精度±30m,分辨率1m。那么,根据分辨率1m就需要根据美国标准大气压计算出至少5000个数据存入ROM,用来查询。处理器可以将查询到的数据以RS232或RS485输出,这样就有利于和其他仪器通讯以及方便用户取用。
通过试验可以看到HPX气压传感器能够用来比较精确的测量高度,特别是在整台仪器标定后测量精度能够有很大的提高,本文采用的标定方法是在测量范围的两端进行标定,使该仪器的精度达到±25m,完全符合设计要求(±30m)。
参考文献:
[1]张志明,范钟秀 气象学与气候学. 中国水利水电出版社,1996年
[2]张铁壁,马文华 振动筒式压力传感器的FLANN 非线性校正. 微计算机信息 ,125-126
[3]杨茂水,李树贵 自动气象站气压、温度和风传感器工作原理。山东气象,48-54
本文作者创新点:提出一种更具有工程实际应用的HPX气压传感器来测量高度的解决方案。
jiang_0514
文章数:881
年度积分:53
历史总积分:3244
注册时间:
气体传感器在石油化学工业气体中的应用
随着石油化学工业的发展,易燃、易爆、有毒气体的种类和应用范围都得到了增加。这些气体在生产、运输、使用 过程中一旦发生泄漏,将会引发中毒、火灾甚至爆炸事故,严重危害人民的生命和财产安全。由于气体本身存在的 扩散性,发生泄漏之后,在外部风力和内部浓度梯度的作用下,气体会沿地表面扩散,在事故现场形成燃烧爆炸或 毒害危险区,扩大危害区域。例如,1995年7月,四川省成都市化工总厂液氯车间发生氯气泄漏,当场造成3人死 亡,6人受伤,仅约一小时左右,市区范围数十平方公里范围内都能闻到刺激性的氯气味。因此,这类事故具有突 发性强、扩散迅速、救援难度大、危害范围广等特点。一旦发生气体泄漏事故,必须尽快采取相应措施进行处置, 才能将事故损失降低到最低水平。及时可靠地探测空气中某些气体的含量,及时采取有效措施进行补救,采取正确的处置方法,减少泄漏引发的事故,是避免造成重大财产和人员伤亡的必要条件。这就对气体的检测和监测设备提出了较高的要求。作为一种重要的气体探测器,气体传感器近年来得到了很大的发展。气体传感器的发展使得其应用越来越广泛。本文介绍了气体传感器的发展情况及在气体泄漏事故处置中的应用前景。
& &
1气体传感器
& & &
国外从30年代开始研究开发气体传感器。过去气体传感器主要用于煤气、液化石油气、天然气及矿井中的瓦斯气体的检测与报警,目前需要检测的气体种类由原来的还原性气体(H2,C4H10,CH4)等扩展到毒性气体(CO,NO2,H2S,NO,NH3,PH3)等。
& & &
气体传感器种类繁多。按所用气敏材料及气敏特性不同,可分为半导体式、固体电解质式、电化学式、接触燃烧式、高分子式等。 &
1.1半导体气体传感器
& & &
这种传感器主要使用半导体气敏材料。自从1962年半导体金属氧化物气体传感器问世以来,由于具有灵敏度高、响应快等优点,得到了广泛的应用,目前已成为世界上产量最大、使用最广的传感器之一。按照检测气敏特征量方式不同分为电阻式和非电阻式两种。
& & &
电阻式半导体气体传感器是通过检测气敏元件随气体含量的变化情况而工作的。主要使用金属氧化物陶瓷气敏材料。随着近年来复合金属氧化物、混合金属氧化物等新型材料的研究和开发,大大提高了这种气体传感器的特性和应用范围。例如:WO3气体传感器可检测NH3的浓度范围为5ppm~50ppm,ZnO-CuO气体传感器对200ppm的CO非常敏感。
& & &
非电阻式半导体气体传感器是利用气敏元件的电流或电压随气体含量而变化的原理工作的。主要有MOS二极管式和结型二极管式,以及场效应管式气体传感器。检测气体大多为氢气、硅烷等可燃气体。
1.2固体电解质气体传感器
& & &
固体电解质气体传感器使用固体电解质气敏材料做气敏元件。其原理是气敏材料在通过气体时产生离子,从而形成电动势,测量电动势从而测量气体浓度。由于这种传感器电导率高,灵敏度和选择性好,得到了广泛的应用,几乎打入了石化、环保、矿业等各个领域,仅次于金属氧化物半导体气体传感器。如测量H2S的YST-Au-WO3、测量NH3的NH+4CaCO3等。
1.3接触燃烧式气体传感器
& & &
可分为直接接触燃烧式和催化接触燃烧式两种。其工作原理是:气敏材料在通电状态下,可燃性气体氧化燃烧或在催化剂作用下氧化燃烧,产生的热量使电热丝升温,从而使其电阻值发生变化,测量电阻变化从而测量气体浓度。这种传感器只能测量可燃气体,对不燃性气体不敏感。例如,在Pt丝上涂敷活性催化剂Rh和Pd等制成的传感器,具有广谱特性,即可以检测各种可燃气体。接触燃烧式气体传感器在环境温度下非常稳定,并能对爆炸下限的绝大多数可燃性气体进行检测,普遍应用于石油化工厂、造船厂、矿井隧道、浴室、厨房等处的可燃性气体的监测和报警。
1.4高分子气体传感器
& & &
利用高分子气敏材料的气体传感器近年来得到了很大的发展。高分子气敏材料在遇到特定气体时,其电阻、介电常数、材料表面声波传播速度和频率、材料重量等物理性能发生变化。主要有酞菁聚合物、LB膜、苯菁基乙炔、聚乙烯醇-磷酸、聚异丁烯、氨基十一烷基硅烷等。高分子气敏材料由于具有易操作性、工艺简单、常温选择性好、价格低廉、易与微结构传感器和声表面波器件相结合,在毒性气体和食品鲜度等方面的检测中具有重要作用。根据所用材料的气敏特性,这类传感器可分为:通过测量气敏材料的电阻来测量气体浓度的高分子电阻式气体传感器;根据气敏材料吸收气体时形成浓差电池,测量电动势来确定气体浓度的浓差电池式气体传感器;根据高分子气 敏材料吸收气体后声波在材料表面传播速度或频率发生变化的原理制成的声表面波气体传感器;以及根据高分子气敏材料吸收气体后重量变化而制成的石英振子式气体传感器等。高分子气体传感器具有对特定气体分子灵敏度高,选择性好,且结构简单,能在常温下使用,可以补充其它气体传感器的不足。
2、气体传感器的发展方向
& & &
目前,国内外对新的气敏材料和气体传感器的研究非常活跃,其主要研究和发展方向主要集中在以下几点:
& & &
首先,开发新的气敏材料。主要措施是在传统的半导体气敏材料SnO,SnO2,Fe2O3中掺杂一些元素,目前有很多这方面的研究报道;其次是研制和开发复合型和混合型半导体气敏材料和高分子气敏材料,使这些材料对不同气体具有高灵敏度、高选择性、高稳定性。
& & &
另外,开发新的气体传感器,应用新材料、新工艺和新技术,对气体传感器的机理做进一步研究,使传感器更加微型化和多功能化,并具有性能稳定、使用方便、价格低廉等特点。
& & &
同时,进一步采用计算机技术实现气体传感器的智能化。气体传感器和计算机技术相结合,出现了智能气体传感器——电子鼻。国内外已成功开发了鉴别和检测食品、香料等的电子鼻。研制开发新型仿生气体传感器-仿生电子鼻是未来气体传感器发展的主要方向。
3、气体传感器在气体泄漏事故处置中的应用
3.1用于可燃气体监测报警
& & &
目前,气敏材料的发展使得气体传感器的灵敏度高、性能稳定、结构简单、体积小、价格便宜,并提高了传感器的选择性和敏感性。现有的燃气报警器,多采用氧化锡加贵金属催化剂气敏元件,但选择性差,并且因催化剂中毒而影响报警的准确性。半导体气敏材料对气体的敏感性与温度有关。常温下敏感度较低,随着温度的升高,敏感度增加,在一定温度下达到峰值。由于这些气敏材料在需要在较高温度下(一般大于100℃)达到敏感度最好,这不仅要消耗额外的加热功率,还会引发火灾。
& & &
气体传感器的发展解决了这一问题。例如,氧化铁系气敏陶瓷所制的气体传感器,不需要添加贵金属催化剂就可造成灵敏度高、稳定性好、具有一定选择性的气体传感器。降低半导体气敏材料的工作温度,大大提高它们在常温下的灵敏度,使其能在常温下工作。目前,除了常用的单一金属氧化物陶瓷外,又开发了一些复合金属氧化物半导体气敏陶瓷和混合金属氧化物气敏陶瓷。
& & &
将气体传感器安装在易燃、易爆、有毒有害气体的生产、储运、使用等场所中,及时检测气体含量,及早发现泄漏事故。并将气体传感器与保护系统联动,使保护系统在气体到达爆炸极限前动作,将事故损失控制在最低。同时,气体传感器的小型化和价格的降低,使之进入家庭成为可能。
3.2在气体检测及事故处置中的应用
3.2.1检测气体种类及特性
在气体泄漏事故发生后,事故处置将围绕采样检测、确定警戒区域、组织危险区域内群众撤离、抢救中毒人员、堵漏、洗消等方面展开。进行处置的第一个方面应该是尽量减少泄漏对人员的伤害,这就要求了解泄漏气体的毒性。气体的毒性指泄漏使物质能够扰乱人们机体的正常反应,因而降低人在事故中制订对策和减轻伤害的能力。美国消防协会将物质的毒性分为以下几类:
NH=0火灾时除一般可燃物危险外,短期接触没有其它危险的物质。
NH=1短期接触可引起刺激,致人轻微伤害的物质。
NH=2高浓度或短期接触可致人暂时失去能力或残留伤害。
NH=3短期接触可致人严重的暂时或残留伤害。
NH=4短暂接触也能致人死亡或严重伤害。[ZK)&
注:以上毒性系数N/-H值只是用来表示人体受害的程度,不能用于工业卫生和环境的评价。
& & &
由于有毒气体可通过人的呼吸系统进入人体造成伤害,在处置有毒气体泄漏事故时的安全防护必须迅速完成。这就要求事故处置人员在到达事故现场后,在最短的时间内能够了解气体的种类、毒性等特性。
& & &
将气体传感器阵列与计算机技术相结合,组成智能气体探测系统,能够做到迅速准确识别气体种类,从而测出气体的毒性。智能气体传感系统由气敏阵列、信号处理系统和输出系统组成。采用多个具有不同敏感特性的气敏元件组成阵列,利用神经网络模式识别技术对混合气体进行气体识别和浓度监测。同时,将常见有毒、有害、易燃气体的种类、性质、毒性输入计算机,并根据气体的性质编制事故处置预案输入计算机。当泄漏事故发生后,智能气体探测系统将按下面程序工作:
& & &
进入现场→吸附气体样品→气敏元件产生信号→计算机识别信号→计算机输出气体种类、性质、毒性及处置方案
& & &
由于气体传感器的灵敏度较高,在气体浓度很低的时候就可以进行检测,而不必深入事故现场,以避免不了解情况而造成不必要的伤害。使用计算机处理,以上过程可以迅速完成。这样,可以迅速准确地采取有效的防护措施,实施正确的处置方案,将事故损失降低到最低程度。另外,由于系统中存储常见气体的性质及处置预案等信息,如果知道泄漏事故中气体的种类,可直接在这套系统中查询气体性质和处置方案。
3.2.2寻找泄漏点
& & &
当泄漏事故发生后,迅速寻找泄漏点,采取适当的堵漏措施是防止事故进一步扩大的必要条件。在有些情况下,由于管线较长、容器较多、泄漏点较隐蔽等原因,特别是泄漏较轻时,泄漏点的寻找比较困难。由于气体的扩散性,气体从容器或管线中泄漏出以后,在外部风力和内部浓度梯度的作用下,开始向四周扩散,即离泄漏点越近,气体的浓度越高。根据这一特点,使用智能气体传感器可解决这一问题。与检测气体种类的智能传感系统不同的是,这种系统的气敏阵列选用若干敏感性部分重叠的气敏元件组成,使传感系统对某一种气体的敏感性增强,利用计算机处理气敏元件的信号变化,可以很快检测出气体的浓度变化,然后根据气体浓度变化找到泄漏点。
& & &
目前,气敏元件集成化使传感器系统的微型化成为可能。例如,日本松下公司研制的一种集成化超微粒传感器,可探测氢气、甲烷等气体,集中在2mm见方的硅片上。同时,计算机技术的发展可以使这种系统的探测速度更快。因此,可以开发小型易于携带的智能传感器系统。将这一系统和合适的图像识别技术相结合,利用遥控技术可以使它自动进入隐蔽空间、有毒有害等人员不宜进入的地点工作,查找泄漏点的位置。
& & &
开发新的气体传感器,特别是开发和完善智能气体传感系统,使之可以在气体泄漏事故中起到报警、检测、识别、智能决策等方面的作用。大大提高气体泄漏事故处置的工作效率和安全性,对于控制事故损失具有重要的作用。现在,气体传感器的研究和开发非常活跃,新的气敏材料不断出现,气体传感器的智能化也得到了一定发展。
& & &
相信在有关科研人员的不断努力下,将会有技术更加成熟的智能气体传感系统,在气体泄漏事故处置中的应用将会更加广泛。
jiang_0514
文章数:881
年度积分:53
历史总积分:3244
注册时间:
催化燃烧型甲烷传感器的研究
丁黎明1,赵景波2 (1.北方民族大学电子与信息工程系,宁夏 银川 750021)(2.江苏大学电气信息工程学院,江苏 镇江 212013)
检测瓦斯最有效最经济的方法是催化燃烧方法,即把催化剂氧化钯黑涂在测量元件表面,再配以物理性能相同的参比元件组成测量电桥(黑白元件)。两只元件用铂丝加热到摄氏400度,当空气中含有可燃气体时,测量元件在催化剂的作用下,在元件表面发生催化反应,使温度上升,通过测量两只元件的温差就能判断出瓦斯的含量[1]。由于催化元件在检测可燃性气体方面有着电路简单、可靠、廉价等许多的优越性能,在全国煤矿安全检测领域得到了广泛应用。催化燃烧型瓦斯检测仪器是当前煤矿中使用最广泛、最普遍的瓦斯检测仪器。是煤矿用来监视矿井瓦斯动态的有效工具。
但是,载体催化元件有个致命的缺陷,就是只能测量4% 浓度以下的甲烷气体,当空气中的瓦斯浓度值超过4% 后,元件就会发生“激活”现象造成永久损坏,使测量范围被局限在很有限的区间里。如果能够解决催化元件的“激活”问题,那将为煤矿安全带来一场重大的变革。
1 &传统的催化燃烧检测的问题
传统的检测原理是检测催化元件与参比元件的温差获得浓度信号,随着浓度上升,元件
江苏省教育厅自然科学基金资助项目(02KJD510009)
温度必然上升,“激活”现象不可避免。当被测气体中甲烷浓度大于4% 时,切断桥路的加热电流,然而实践证明,尽管有保护电路存在,还是不能有效保护传感器元件。
根据文献,无论什么配方的催化剂,在表面温度&600℃后,催化剂氧化钯黑都无法抵抗氧化还原反应的发生,结果造成检测元件的损坏。
当催化元件被点燃之后,再切断电源也无法扑灭,元件会一直维持燃烧状态,直到将其烧毁为止。而在高浓甲烷环境下,很小的能量“触发”就会导致催化元件的完全烧毁,而仪表检测又必须让元件在燃烧状态工作,这就是我们必须要解决的关键。
我们做了这样一个试验,在黑暗的环境中,往试验杯中通以10% 浓度的甲烷气样(9.5% 浓度的瓦斯气体具有最强烈的爆炸特性),接通测量桥路电源,让元件进入催化反应状态,检测元件在瓦斯和氧气的反应下立刻发出明亮的光辉;这时立即切断桥路电源,但是催化反应并没有停止,催化反应产生的热量还会维持燃烧, 这种燃烧的能量来源于甲烷与氧气的反应,这就是虽然断电保护,但仍然不能有效杜绝“激活”的原因。
2 &甲烷传感器催化元件的高浓冲击问题
催化元件测量高浓甲烷时,因甲烷挤占了空气中的氧气,使催化反应不但没有加强,反而随着浓度增加而下降,浓度越高测量值反而越小。实际应用中这种特性存在着极大危险,这就是长期困扰人们的二值性误测问题[2,3]。
解决二值性问题的关键是如何确定仪器的取值区间,不同的区间会得出不同的测量结果。人们采用催化元件与热导元件组合方式制造了高低浓组合式甲烷传感器,但由于热导元件在量程的高端和低端分辨率低,在两元件测量的相交点上无法吻合,不能准确切换。又由于两种元件工作机理不同,两参数的整定、测量算法无法统一,再加上双元件、双供电、双零点、双精度、双补偿,使仪器的使用变得极其复杂,更无法接受的是两种元件切换时必须经过很长的停电/加热转换过程,这期间仪器是“休止”状态,在时间上和测量值上都是不连续的,这样就给产品的推广应用带来极大障碍。黑白元件特性曲线如图1所示。
解决催化元件的高浓冲击问题,就是解决催化元件高温的问题,还是要从桥路平衡上解决。在连续供电的检测桥路上,任何的辅助控制,都会成功地将失衡的桥路矫正,但是被外电路钳制成平衡的桥路不等于恒温的桥路,桥路的平衡条件是对边阻抗乘积等于另一边阻抗乘积,如下式:
Z1×Z4=Z2×Z3
如果Z4是测量元件,Z3为参比元件,在高浓甲烷环境中Z4温度上升后对Z4加以分流控制,必将引起其并联阻抗下降,很小的分流控制就能够将桥路恢复到平衡状态,分流所产生的降温效果微不足道,不足以改善高温对测量元件的激活现象,并且闭合的控制环路需要两只元件的温差来维持补偿电流,在理论上就注定实现不了测量元件的“恒温”,此时测量元件与参比元件温差并没有减小多少,仅仅是维持了桥路的平衡,也无法起到对元件的保护作用。
要设计出真正的恒温检测桥路,就必须抛开连续电流供电的传统方法,以保证测量元件与参比元件温度永远相等。
我们通过一个微机处理芯片构成的闭环反馈系统,强迫检测元件与参比元件保持在平衡状态,使测量元件工作在恒温状态下。这样的检测环路使测量元件的温度与参比元件进行温度比较,当环境中的甲烷气体在测量元件表面燃烧时,测量元件的温度将很快上升使电桥失去平衡,微处理芯片构成的闭环反馈系统监测到偏移信号后,输出控制脉冲信号,将已经偏移的桥路“矫正”回来,使回路周而复始的工作在“偏移”/“校正”的振荡之中,测量元件的温度是以微小的锯齿波形状的轨迹在恒温区波动。这个波动的温差很小,只有零点几度的差别,基本上可以认为参比元件和测量元件的温度是相等的。传统的检测桥路与恒温桥路的浓度温度特性如图3[4,5,6]。
空气中的甲烷浓度越高,从平衡到失衡的过渡时间就越短,通过检测这个升温时间,就能够得到与甲烷浓度成正比的测量参数。这种方法保证了在任何甲烷浓度下,测量元件的温度不变,彻底有效地杜绝了高浓甲烷的燃烧,大大延长了催化元件的使用寿命,也使仪器的零点稳定性、精度稳定性得到了的提高。
3 &结语
设计的脉冲供电检测桥路与传统的测量机理截然不同,测量桥路是恒温的,无论检测多高浓度的瓦斯,检测元件的温度都不变,所以它能够抗高浓冲击,能够拥有更长的寿命和极好的稳定性。
该方法与传统的检测方法区别在于,检测元件工作于间歇脉冲供电状态,检测元件不随甲烷温度变化,只有反馈环路中的脉冲频率与甲烷浓度呈正比关系。从微观的角度上看,单片机检测的是测量元件上温度的上升速率,而传统方法则是检测元件上的绝对温度。综合以上,所示效果良好。
参考文献
[1] 刘建周,范健,王小刚等.甲烷催化燃烧反应与甲烷传感器稳定性的研究.煤炭转化.):87-90
[2] 谢宝卫,李国斌.催化燃烧型瓦斯检测仪器性能特征及影响因素浅析.煤矿安全.2002,33(3):54-55
[3] 朱正和.提高甲烷载体催化元件灵敏度的研究.矿业安全与环保.2003,30(6):21-22
[4] 孙纲灿,周常柱,苏贝.用单片机实现瓦斯探测器.微计算机信息.-2):66-68
[5] 孙川,朱翔鸥,王永骥.基于神经网络的传感器非线性静态特性模型辨识.微计算机信息.-1):138-141
[6] Shukla, S.Inverse-catalyst-effect observed for nanocrystalline-doped tin oxide sensor at lower operating temperatures.Sensors and Actuators B (Chemical).-231
本文作者创新点:在传统的催化燃烧型甲烷传感器检测方法的基础上,实验验证了催化燃烧原理,并设计了基于脉冲式恒温供电技术和闭环反馈系统的恒温检测桥路。使设计的检测元件工作于间歇脉冲供电状态,检测元件不随甲烷温度变化,只有反馈环路中的脉冲频率与甲烷浓度呈正比关系。从微观的角度上看,单片机检测的是测量元件上温度的上升速率,而传统方法则是检测元件上的绝对温度。
jiang_0514
文章数:881
年度积分:53
历史总积分:3244
注册时间:
小型无线风速仪系统设计
、引 言
在现代社会中随着科学技术的飞速发展,各个领域中,对数据采集的需要越来越多,数据采集技术应用越来越广泛。无线传输通讯模块可以使MCU 数据采集系统准确、快捷的把测量数据传输给PC 机或其他接收设备,组成无线通讯传输系统。
同时,随着现代海洋开发事业的迅速发展,对准确、实时、近实时的海洋学和气象学资料的需求量迅速增加;伴随着现代社会中科学技术的飞速发展,数据采集技术应用越来越广泛。小型无线风速仪是一种无人值守的,能自动定时采集风速风向数据,自动存储记录,并将数据通过VHF通信机发送到接收站的小型测量仪器。该风速仪主要用于沿岸海洋环境监测站和近海环境工程的监测工作。
2、系统结构
整个系统主要由以下几个部分组成:采集处理系统、通信系统、风传感器、接收站等。
图1 & 系统原理结构图
下面详细介绍对系统硬件的选择:
2.1风传感器
风传感器选用的是美国R.M.Yong公司生产的05106型风传感器。
05106型风传感器是一种风速、风向传感器一体的螺旋桨式、飞机尾翼强风传感器,它精度高、坚固耐用、结构简单、抗腐蚀、适用范围广。尾翼的转动产生一个正弦波交流电压信号,信号的频率与风速成比例。以极低的比率来保证风波动信号不失真,风向标的角度非常灵敏,在密封的壳内装有一个高精度的电位计,电位计输出的电压与风标的角度成比例,风标有一个定位装置能保证仪器装卸维修后风向复位。
2.2采集处理系统
采集处理系统为整个系统的核心,完成自动采集传感器信号、处理并存储数据、然后通过通信机将数据发往岸站。采用51系列单片机,主要由采集板、电池等组成。采集处理系统在指定的观测整点根据一定的时序采集并处理各类传感器的信号和数据,然后通过通信系统发送到接收站,同时将原始数据保存到存储器中,还随时响应计算机的各类读数据、写数据、检测等命令。采集处理系统每隔一小时或指定间隔(可设)定时进行数据采集和处理。
&
2.2.1 主控电路
主控电路由单片机及其编程配置电路组成(ISP)、看门狗电路、时钟电路、电压转换电路组成。
1)MCU &考虑到风速仪需要在海上工作且采用电池供电,因此MCU采用ATMEL公司的AT89S52,它是一种低功耗、高性能CMOS 8位单片机,片内含8k Bytes ISP的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,具有在线可编程功能。可通过编程配置电路(ISP)在线下载,保证了设计的灵活性[1]。
2)看门狗电路 &由于单片机自身的抗干扰能力较差,尤其是在海上这种条件比较恶劣的场合,常会出现单片机因受外界干扰而导致死机的现象,造成系统不能正常工作。而看门狗可以防止单片机死机、提高单片机系统的抗干扰性能。该看门狗电路选用芯片MAX1232,提供产生手动复位信号、电源监控、看门狗等功能[2]。
3)时钟电路 &由于该系统要求定时采集数据,因此必须选择时钟模块以提供准确的采集时间。该系统选择高精度实时时钟模块SD2200,该系列是一种具有内置晶振、支持I2C总线的高精度实时时钟芯片。该芯片可保证时钟精度为±5ppm(在-10~50℃下),即年误差小于2.5 分钟;
4) 电压转换电路 &该系统支持AC220V及DC12V两种供电方式。交流供电的时候,AC220V经过AC/DC模块转换成12V直流电,而DC12V供电方式采用12V铅酸蓄电池。12V直流电可以直接为电台提供电源,12V经过转换可以得到5V、8V的电压,为芯片提供合适的工作电压。
&
图2 风速信号调理电路图
该系统有两路模拟量输入信号,一路为来自风传感器的风向信号,另一路为电池电压信号,该电路由一片8位串行A/D转换器ADC0832及两路前端放大器组成。电路原理图如图3所示。
&
图3风向信号调理电路图
2.2.3 存储电路
该系统的测量参数为10分钟平均风速、3小时最大风速、平均风向,而且全部测量数据储存,储存介质容量应满足连续工作1年的需要。所以需要存储的数据为时间和风速风向,经估算1年的存储数据约为80k,因此本系统选择两片24C512,共128k存储空间,采用I2C总线技术[3]。
2.3 &通信系统
数据采集电路采集来的数据除了存储在存储芯片中,还要及时的传递数据到岸站的pc机上,以便于人们查看采集到的数据。因此通讯体统必不可少,该风速仪采用日产NISSEI专业数传电台,它具有以下特点:
1) & & & 与目前同类进口数传电台相比, 功能最先进、体积最小;
2) & & & 发射功率1~12W可调, 所有技术指标达到欧洲工业标准;
3) & & & 数传专用频段(223~235MHz),16个半双工频道可编程设置;
4) & & & 工作温度范围:-40°C~+70°C,适应严酷的工作环境
2.3.1通信系统可达到的技术要求
1) & & & 传输时间:每次测量后整点发送(间隔时间可设置);
2) & & & 发射机功率:5W;
3) & & & 传输速率:bps;
4) & & & 通信频率:229MHz;
5) & & & 浮标天线形式:鞭状天线;
6) & & & 岸站天线形式:鞭状或定向天线;
7) & & & 传输距离:不小于20km。
2.3.2通信系统的控制电路
通信部分的控制电路采用MAX232芯片,它将单片机串行接口的TTL电平转换为标准的RS-232电平,以便与通信机输入接口相连接。电台的开启关闭用单片机的一个I/O口控制。 & & & & & & & & & & & & & & & & & & & & & & & & &
3、软件设计
主程序的工作是每2s采样一次风速和风向,并暂存,10min到后计算10min平均风速和风向,然后向接收站发送联机请求,进行联机操作。系统软件流程图见图4。 数据采集主程序及中断程序框图如图:
图4软件设计流程图
4 结束语
小型无线风速仪研制成功后,先后做了多项实验,从使用情况来看,该仪器性能稳定,运行可靠,测量准确,实际应用取得较好的效果。
参考文献
[1] &祁伟,杨亭.单片机C51程序设计教程与实验[M].北京:北京航空航天大学出版社,2006.
[2] &李伯成.基于MCS-51单片机的嵌入式系统设计[M].北京:电子工业出版社,2004.
[3] &周治良 刘俊等,基于FPGA及FLASH的数据采集存储系统设计[J].微计算机信息,:91-92
jiang_0514
文章数:881
年度积分:53
历史总积分:3244
注册时间:
气敏传感器的应用电路
分为检测、报警、监控等几种类型。
1、电源电路
& &一般气敏元件的工作电压不高(3V~10V),其工作电压,特别是供给加热的电压,必须稳定。否则,将导致加热器的温度变化幅度过大,使气敏元件的工作点漂移,影响检测准确性。
2、辅助电路
由于气敏传感器元件自身的特性(温度系数、湿度系数、初期稳定性等),在设计、制作应用电路时,应予以考虑。如采用温度补偿电路,减少气敏元件的温度系数引起的误差;设置延时电路,防止通电初期,因气敏元件阻值大幅度变化造成误报;使用加热器失效通知电路,防止加热器失效导致漏报现象。下图是一温度补偿电路:
3、检测工作电路
& & 这是气敏元件应用电路的主体部分。 & &
下图是设有串联蜂鸣器的应用电路。随着环境中可燃性气体浓度的增加,气敏元件的阻值下降到一定值后,流入蜂鸣器的电流,足以推动其工作而发出报警信号。
下图是差分式可燃性气体检测仪电路原理图。
& &在此电路中,BG1、BG2的参数应力求一致,最好选用差分对管。采用这种差分电路,检测气体的灵敏度可达100 ×10-6。
下图是家用煤气(CO)安全报警电路。
一部分是煤气报警器,在煤气浓度达到危险界限前发生警报;另一部分是开放式负离子发生器,其作用是自动产生空气负离子,使煤气中主要有害成分一氧化碳与空气负离子中的臭氧(O3)反应,生成对人体无害的二氧化碳。
jiang_0514
文章数:881
年度积分:53
历史总积分:3244
注册时间:
气体传感器在石油化学工业气体泄漏事故中的应用
随着石油化学工业的发展,易燃、易爆、有毒气体的种类和应用范围都得到了增加。这些气体在生产、运输、使用 过程中一旦发生泄漏,将会引发中毒、火灾甚至爆炸事故,严重危害人民的生命和财产安全。由于气体本身存在的 扩散性,发生泄漏之后,在外部风力和内部浓度梯度的作用下,气体会沿地表面扩散,在事故现场形成燃烧爆炸或 毒害危险区,扩大危害区域。例如,1995年7月,四川省成都市化工总厂液氯车间发生氯气泄漏,当场造成3人死 亡,6人受伤,仅约一小时左右,市区范围数十平方公里范围内都能闻到刺激性的氯气味。因此,这类事故具有突 发性强、扩散迅速、救援难度大、危害范围广等特点。一旦发生气体泄漏事故,必须尽快采取相应措施进行处置, 才能将事故损失降低到最低水平。及时可靠地探测空气中某些气体的含量,及时采取有效措施进行补救,采取正确的处置方法,减少泄漏引发的事故,是避免造成重大财产和人员伤亡的必要条件。这就对气体的检测和监测设备提出了较高的要求。作为一种重要的气体探测器,气体传感器近年来得到了很大的发展。气体传感器的发展使得其应用越来越广泛。本文介绍了气体传感器的发展情况及在气体泄漏事故处置中的应用前景。
1气体传感器
  
国外从30年代开始研究开发气体传感器。过去气体传感器主要用于煤气、液化石油气、天然气及矿井中的瓦斯气体的检测与报警,目前需要检测的气体种类由原来的还原性气体(H2,C4H10,CH4)等扩展到毒性气体(CO,NO2,H2S,NO,NH3,PH3)等。
  
气体传感器种类繁多。按所用气敏材料及气敏特性不同,可分为半导体式、固体电解质式、电化学式、接触燃烧式、高分子式等。
1.1半导体气体传感器
  
这种传感器主要使用半导体气敏材料。自从1962年半导体金属氧化物气体传感器问世以来,由于具有灵敏度高、响应快等优点,得到了广泛的应用,目前已成为世界上产量最大、使用最广的传感器之一。按照检测气敏特征量方式不同分为电阻式和非电阻式两种。
  
电阻式半导体气体传感器是通过检测气敏元件随气体含量的变化情况而工作的。主要使用金属氧化物陶瓷气敏材料。随着近年来复合金属氧化物、混合金属氧化物等新型材料的研究和开发,大大提高了这种气体传感器的特性和应用范围。例如:WO3气体传感器可检测NH3的浓度范围为5ppm~50ppm,ZnO-CuO气体传感器对200ppm的CO非常敏感。
  
非电阻式半导体气体传感器是利用气敏元件的电流或电压随气体含量而变化的原理工作的。主要有MOS二极管式和结型二极管式,以及场效应管式气体传感器。检测气体大多为氢气、硅烷等可燃气体。
1.2固体电解质气体传感器
  
固体电解质气体传感器使用固体电解质气敏材料做气敏元件。其原理是气敏材料在通过气体时产生离子,从而形成电动势,测量电动势从而测量气体浓度。由于这种传感器电导率高,灵敏度和选择性好,得到了广泛的应用,几乎打入了石化、环保、矿业等各个领域,仅次于金属氧化物半导体气体传感器。如测量H2S的YST-Au-WO3、测量NH3的NH+4CaCO3等。
1.3接触燃烧式气体传感器
  
可分为直接接触燃烧式和催化接触燃烧式两种。其工作原理是:气敏材料在通电状态下,可燃性气体氧化燃烧或在催化剂作用下氧化燃烧,产生的热量使电热丝升温,从而使其电阻值发生变化,测量电阻变化从而测量气体浓度。这种传感器只能测量可燃气体,对不燃性气体不敏感。例如,在Pt丝上涂敷活性催化剂Rh和Pd等制成的传感器,具有广谱特性,即可以检测各种可燃气体。接触燃烧式气体传感器在环境温度下非常稳定,并能对爆炸下限的绝大多数可燃性气体进行检测,普遍应用于石油化工厂、造船厂、矿井隧道、浴室、厨房等处的可燃性气体的监测和报警。
1.4高分子气体传感器
  
利用高分子气敏材料的气体传感器近年来得到了很大的发展。高分子气敏材料在遇到特定气体时,其电阻、介电常数、材料表面声波传播速度和频率、材料重量等物理性能发生变化。主要有酞菁聚合物、LB膜、苯菁基乙炔、聚乙烯醇-磷酸、聚异丁烯、氨基十一烷基硅烷等。高分子气敏材料由于具有易操作性、工艺简单、常温选择性好、价格低廉、易与微结构传感器和声表面波器件相结合,在毒性气体和食品鲜度等方面的检测中具有重要作用。根据所用材料的气敏特性,这类传感器可分为:通过测量气敏材料的电阻来测量气体浓度的高分子电阻式气体传感器;根据气敏材料吸收气体时形成浓差电池,测量电动势来确定气体浓度的浓差电池式气体传感器;根据高分子气 敏材料吸收气体后声波在材料表面传播速度或频率发生变化的原理制成的声表面波气体传感器;以及根据高分子气敏材料吸收气体后重量变化而制成的石英振子式气体传感器等。高分子气体传感器具有对特定气体分子灵敏度高,选择性好,且结构简单,能在常温下使用,可以补充其它气体传感器的不足。
2气体传感器的发展方向
  
目前,国内外对新的气敏材料和气体传感器的研究非常活跃,其主要研究和发展方向主要集中在以下几点:
首先,开发新的气敏材料。主要措施是在传统的半导体气敏材料SnO,SnO2,Fe2O3中掺杂一些元素,目前有很多这方面的研究报道;其次是研制和开发复合型和混合型半导体气敏材料和高分子气敏材料,使这些材料对不同气体具有高灵敏度、高选择性、高稳定性。
另外,开发新的气体传感器,应用新材料、新工艺和新技术,对气体传感器的机理做进一步研究,使传感器更加微型化和多功能化,并具有性能稳定、使用方便、价格低廉等特点。
  
同时,进一步采用计算机技术实现气体传感器的智能化。气体传感器和计算机技术相结合,出现了智能气体传感器--电子鼻。国内外已成功开发了鉴别和检测食品、香料等的电子鼻。研制开发新型仿生气体传感器-仿生电子鼻是未来气体传感器发展的主要方向。
3气体传感器在气体泄漏事故处置中的应用
3.1用于可燃气体监测报警
  
目前,气敏材料的发展使得气体传感器的灵敏度高、性能稳定、结构简单、体积小、价格便宜,并提高了传感器的选择性和敏感性。现有的燃气报警器,多采用氧化锡加贵金属催化剂气敏元件,但选择性差,并且因催化剂中毒而影响报警的准确性。半导体气敏材料对气体的敏感性与温度有关。常温下敏感度较低,随着温度的升高,敏感度增加,在一定温度下达到峰值。由于这些气敏材料在需要在较高温度下(一般大于100℃)达到敏感度最好,这不仅要消耗额外的加热功率,还会引发火灾。
  
气体传感器的发展解决了这一问题。例如,氧化铁系气敏陶瓷所制的气体传感器,不需要添加贵金属催化剂就可造成灵敏度高、稳定性好、具有一定选择性的气体传感器。降低半导体气敏材料的工作温度,大大提高它们在常温下的灵敏度,使其能在常温下工作。目前,除了常用的单一金属氧化物陶瓷外,又开发了一些复合金属氧化物半导体气敏陶瓷和混合金属氧化物气敏陶瓷。
  
将气体传感器安装在易燃、易爆、有毒有害气体的生产、储运、使用等场所中,及时检测气体含量,及早发现泄漏事故。并将气体传感器与保护系统联动,使保护系统在气体到达爆炸极限前动作,将事故损失控制在最低。同时,气体传感器的小型化和价格的降低,使之进入家庭成为可能。
3.2在气体检测及事故处置中的应用
3.2.1检测气体种类及特性
  
在气体泄漏事故发生后,事故处置将围绕采样检测、确定警戒区域、组织危险区域内群众撤离、抢救中毒人员、堵漏、洗消等方面展开。进行处置的第一个方面应该是尽量减少泄漏对人员的伤害,这就要求了解泄漏气体的毒性。气体的毒性指泄漏使物质能够扰乱人们机体的正常反应,因而降低人在事故中制订对策和减轻伤害的能力。美国消防协会将物质的毒性分为以下几类:
  
NH=0火灾时除一般可燃物危险外,短期接触没有其它危险的物质。
  
NH=1短期接触可引起刺激,致人轻微伤害的物质。
  
NH=2高浓度或短期接触可致人暂时失去能力或残留伤害。
  
NH=3短期接触可致人严重的暂时或残留伤害。
  
NH=4短暂接触也能致人死亡或严重伤害。[ZK)&
  
注:以上毒性系数N\-H值只是用来表示人体受害的程度,不能用于工业卫生和环境的评价。
  
由于有毒气体可通过人的呼吸系统进入人体造成伤害,在处置有毒气体泄漏事故时的安全防护必须迅速完成。这就要求事故处置人员在到达事故现场后,在最短的时间内能够了解气体的种类、毒性等特性。
  
将气体传感器阵列与计算机技术相结合,组成智能气体探测系统,能够做到迅速准确识别气体种类,从而测出气体的毒性。智能气体传感系统由气敏阵列、信号处理系统和输出系统组成。采用多个具有不同敏感特性的气敏元件组成阵列,利用神经网络模式识别技术对混合气体进行气体识别和浓度监测。同时,将常见有毒、有害、易燃气体的种类、性质、毒性输入计算机,并根据气体的性质编制事故处置预案输入计算机。当泄漏事故发生后,智能气体探测系统将按下面程序工作:
  
进入现场→吸附气体样品→气敏元件产生信号→计算机识别信号→计算机输出气体种类、性质、毒性及处置方案
  
由于气体传感器的灵敏度较高,在气体浓度很低的时候就可以进行检测,而不必深入事故现场,以避免不了解情况而造成不必要的伤害。使用计算机处理,以上过程可以迅速完成。这样,可以迅速准确地采取有效的防护措施,实施正确的处置方案,将事故损失降低到最低程度。另外,由于系统中存储常见气体的性质及处置预案等信息,如果知道泄漏事故中气体的种类,可直接在这套系统中查询气体性质和处置方案。
3.2.2寻找泄漏点
  
当泄漏事故发生后,迅速寻找泄漏点,采取适当的堵漏措施是防止事故进一步扩大的必要条件。在有些情况下,由于管线较长、容器较多、泄漏点较隐蔽等原因,特别是泄漏较轻时,泄漏点的寻找比较困难。由于气体的扩散性,气体从容器或管线中泄漏出以后,在外部风力和内部浓度梯度的作用下,开始向四周扩散,即离泄漏点越近,气体的浓度越高。根据这一特点,使用智能气体传感器可解决这一问题。与检测气体种类的智能传感系统不同的是,这种系统的气敏阵列选用若干敏感性部分重叠的气敏元件组成,使传感系统对某一种气体的敏感性增强,利用计算机处理气敏元件的信号变化,可以很快检测出气体的浓度变化,然后根据气体浓度变化找到泄漏点。
  
目前,气敏元件集成化使传感器系统的微型化成为可能。例如,日本松下公司研制的一种集成化超微粒传感器,可探测氢气、甲烷等气体,集中在2mm见方的硅片上。同时,计算机技术的发展可以使这种系统的探测速度更快。因此,可以开发小型易于携带的智能传感器系统。将这一系统和合适的图像识别技术相结合,利用遥控技术可以使它自动进入隐蔽空间、有毒有害等人员不宜进入的地点工作,查找泄漏点的位置。
开发新的气体传感器,特别是开发和完善智能气体传感系统,使之可以在气体泄漏事故中起到报警、检测、识别、智能决策等方面的作用。大大提高气体泄漏事故处置的工作效率和安全性,对于控制事故损失具有重要的作用。现在,气体传感器的研究和开发非常活跃,新的气敏材料不断出现,气体传感器的智能化也得到了一定发展。
相信在有关科研人员的不断努力下,将会有技术更加成熟的智能气体传感系统,在气体泄漏事故处置中的应用将会更加广泛。
工控学堂推荐视频:}

我要回帖

更多关于 气压检测仪 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信