ma...

9maand · Welkom!
Welkom op de nieuwe 9Maand-site!
Laatste artikels
Laatste forumposts
Vandaag 15:28 -
& Vandaag 15:21 -
& Vandaag 15:20 -
& Vandaag 15:18 -
& Vandaag 15:17 -
& Vandaag 15:07 -
& Vandaag 15:06 -
& Vandaag 15:00 -
& Vandaag 14:57 -
& Vandaag 14:54 -
In de kijker
Zwangerschapsberekening
Eerste dag van je laatste menstruatie
Cycluslengte
Leeftijd (bij bevruchting)
Niet zwanger
Huidige ovulatie:/
Volgende ovulatie:/
Vruchtbare periode:/
Volgende menstruatie/
Bevallingsdatum:/
Voortgang:/
Voortgangspercentage:/%
Overblijvend:/
Sterrenbeeld:/
Geslacht:/ (Volgens de Chinese maankalender)
Momenteel zijn er 115 bezoekers.
Volg ons op
9Maand clubs
OverzichtDoor ouders9Maand ClubOver 9Maand
Deze site gebruikt cookies
Deze site gebruikt cookies om het gebruiksgemak te vergroten. Door op "Ga verder" te klikken of gebruik te maken van onze site, geef je toestemming voor het gebruik van cookies in overeenkomst met onze Cookie Policy
InloggenLet op: Je login van de oude site werkt hier niet!
voor meer info.E-mail *Wachtwoord * Hou me aangemeld您当前的位置:&>&&>>&阿尔法&>>&
【清仓 全场满减& 8.21―8.25】 阿尔法ALPHA MA-1飞行夹克
市场价:¥922
月累计售出:252件
铁血价:¥738738
库   存:满200元可货到付款,优先选择支持货到付款仓库
请勾选您要的商品信息
放入购物车
商品已放入购物车中!
您的购物车中共有 1件 商品,共计 元。
||||||||||||||||
||||||||||
||||||||||
喜欢本产品的用户还喜欢
浏览过的商品
热卖产品推荐
月购买记录(0件)
●直接从美国ALPHA公司进口
●在1950年,美国空军采用了更加耐用舒适,经济性和勤务性更好的尼龙取代了传统的皮革成了美国空军飞行夹克的面料。正是这次变革导致了服装中的一个新经典的诞生。这就是美国空军的MA1飞行夹克。
●1955年,美国空军基于尼龙面料设计的全新的完全区别于二战时期飞行夹克的新一代飞行夹克,美军给它取的代号是MA1飞行夹克。MA1飞行夹克是美国空军中等重量的飞行服,它适合摄氏10度到-10度的湿冷气候条件下穿用。它采用的尼龙面料不是普通服装使用的尼龙面料,MA1采用的是美国杜邦公司开发的66飞行尼龙,这是一种专门用在飞行和航空方面的材料,它比一般的尼龙要致密,面料在阳光下可以发出象丝绸缎子一样的光泽。手感也很光滑。由于它的密度很高所以防风防水,当雨滴落在衣服表面时不会立即渗透,而是会形成一个小水滴滑落。这一性能,是现代喷气机技术发展的要求。因为假设飞行员在上飞机前淋了雨,他带着满身雨水进入机舱。当进入高空高速飞行时,在没有环境控制系统的坐舱里,水滴就会结成冰冻在飞行员身上。这就是为什么尼龙夹克取代皮夹克的原因之一。
●二战期间,虽然空军已经意识到了尼龙夹克的意义,但是战时的尼龙是新型材料,产量不大价格昂贵(估计熟悉二战历史的朋友应该记得在描写二战的电影里,女性见到尼龙丝袜时的表情。)而且生产全部用于制造降落伞。所以,尼龙夹克在二战以后才开始替代皮夹克(A系列、B系列和G系列)。MA-1的前身是B-15。与B-15相比,MA1主要有两大改进。一是取消了剪绒毛领,二是采用了高可视度的橙色内衬。
●飞行员们发现,剪绒毛领虽暖和,但它有时会妨碍飞行员伞具的携带和使用(这是要命的)。而且二战后,新型的,完全不同于二战时期皮革飞行帽的硬式飞行头盔也开始广泛装备部队,飞行员发现剪绒毛衣领也不能很好地配合新式头盔。所以,以后的飞行夹克都不得采用剪绒毛领。这一条要求写进了美国国防部的军品规范。MA-1采用了针织领,由毛线织成的衣领可以紧贴在脖子上很暖和,不会妨碍飞行员戴头盔和穿用伞具。袖口和衣服的下摆也是针织物收口的,由于里面都织有弹性纤维加强,所以弹性很好且很耐用,针织袖口可以紧缩在手腕上,防止风从袖口灌进。
●MA-1实际上是春、秋、冬三季夹克。在地面时,拉开拉链,身体内多余的热量可以很快排走,升空后,拉上拉链,立即可以保暖。1960年,MA1有了一次很有意义的改进,就是把衣服的内里改为高可视度的橘红色内里,并加上了口袋和双面拉练。这样,当飞迫降,飞行员逃离后,他只要将他的MA1夹克反过来,他就立即得到了一件紧急的救生夹克,在气候和可见度良好的情况下,在空中的救援人员很远就可以轻易的发现遇险飞行员。这对飞行员来说是非常实用和有意义并一直保留到现在。
●在衣服的左臂上有一个组合口袋,它由一个拉练开合的口袋和笔袋组成。这个口袋最初的设计初衷是让飞行员装一包烟。笔袋里可以装两支以上的笔,因为飞行员要用不同色的笔来在图纸上表定不同的位置。事实证实这是一个非常实用的设计,直到现在美国空军的联体飞行服上都还保留这这个设计,可是现在它不是用来装香烟,而是用来装些小零碎,很多其他的军服甚至是民用的服装都借鉴了这种口袋。MA1外还有2个口袋,可以用来暖手或装其他的东西。(可是没有想到,飞行员都喜欢在没事时把手插在这2个口袋里到处闲逛。为了捍卫军人的形象,在后来的CWU45/P的设计时才把衣服的口袋开的很高以避免这种不良现象的出现)。MA1采用的是高收腰夹克设计,这是为了避免飞行员在狭小的坐舱内进出挂到各种开关。而且它的这种设计非常适合坐姿工作,当飞行员坐下时夹克的下摆正好在腰带部位,不会缩成一堆坐在臀部下。而且飞行员在驾驶飞机时,大腿上要绑地图,短夹克的设计绝对不会妨碍驾驶员查看地图。而且美军习惯将自己的武器和装备挂在S腰带上,高收腰的设计不会妨碍挂在腰部的装备的取用。这也是美军的习惯之一。最初的MA1在胸前还有挂氧气面罩的和耳机线的挂环,这种设计只能在B-15和MA-1部分复刻版才能见到。最初的飞行夹克内里的保温填充物是58%的羊毛和42%棉花。在衣服的腋下特意空出了些空间没有填充,以方便散热。后来美国空军采用了人造纤维做为保温填充物,这样降低了衣服的重量(要知道在现代喷气机上,物品的重量是论克的)。还在衣服的口袋上加了袋盖以防止口袋中的东西滑出口袋。
●产地为中国或者越南。颜色有黑色、枪灰色两种。&
1、1/2胸围:左腋下1cm处到右腋下1cm的垂直距离
2、1/2下摆:下摆左衣角到右衣角的垂直距离
3、袖长:腋下线缝处至袖口线缝的垂直距离
4、衣长:背后的领缝中间处至上衣下摆间的垂直距离
阿尔法 ALPHA MA-1飞行夹克&&单位(CM)
注:手工测量,存在一定误差,仅供参考。
模特尺寸推荐(仅供参考)
模特/所选尺码
合身,军规品质
腰身稍肥,其他正合适
很合身,款式干练
士兵4/XL码
修身效果不错,合适
推荐尺码仅供参考,建议您根据实际情况对比购买,如无法确认请联系客服!
S合适160cm/58kg肩宽42cm 胸围88cm腰围76cm 臀围93cm
M合适170cm/67.5kg肩宽43cm 胸围94cm腰围80cm 臀围97cm
M合适175cm/75kg肩宽47cm 胸围95cm腰围90cm 臀围101cm
L合适178cm/75kg肩宽46cm 胸围97cm腰围93cm 臀围101.5cm
L合适179cm/85kg肩宽47cm 胸围98cm腰围92cm 臀围102
L合适185cm/85kg肩宽45cm 胸围100cm腰围92cm 臀围108.5cm
XXL合适185cm/100kg肩宽52cm 胸围112cm腰围102cm 臀围113cm
注:参照表中图片及模特信息归铁血君品行所有,未经同意请勿任意改写或使用!
共201次打分
我购买过此商品
我要回复:
您还可以输入70个字符&
抱歉,您的回复出问题了!
字数超出限度,请修改后再回复。
月购买记录(0件)
购买价格的不同可能是因促销或打折引起,详情可以咨询卖家。
本商品累计售出件,最近一个月成交件
款式和型号
商品签收之日起7天内,铁血君品行为您提供无理由退换货服务
铁血君品行"7天无理由退换货"规则
有效时间(签收之日起)
商品不满意可退换
7天可退/30天可换
尺码不合适可退换
7天可退/30天可换
质量问题可退换
7天可退/30天可换请在
48小时内联系客服
配送错误可退换
7天可退/30天可换请在
48小时内联系客服
快递破损可退换
&退换货办理流程
1)退货时间: 自购买商品之日(客户收货日期)起7天 换货时间: 自购买商品之日(客户收货日期)起30天
2) 客户需保持商品原貌:商品、商标、包装无污染,无破损,不影响二次销售。
3) 对所购商品不满意或与订单内容不符且未经使用.
4) 在退换货期内,如因商品质量问题,客户可以退换货或选择厂商维修服务,如果厂商有特殊规定的商品按厂商规定执行。
5) 客户提出退换货要求时,请提供收货日期凭证,快递签单或销售票据,以便我们核对该商品是否处在退换期内。
6) 客户提出退换货时,经铁血君品行审核后才会办理退换手续。如有问题需要协商的,协商时间不计入总时间,退换货时间 可相应延长。
7) 具体产品的退换货范围参照厂家提出的保修原则,不属于厂家保修范围规定的质量问题的商品一律不退换。详情参阅各类 目退换及保修细则。
8) 请采用普通快递方式寄回商品,不接受邮局平邮、快递到付及货运的方式寄回商品。
9)退换货时,如有发票、活动赠品需同退换货商品一同寄回。
商品咨询(0)
商品咨询(0条)
同类商品推荐
1.购买流程:
2.配送信息:
配送物流:
本站默认顺丰,同时支持宅急送、申通、EMS
配送范围:
全国大部分地区均可送达
始发货地:
总仓从北京发货,其他分仓为上海、深圳、哈尔
滨、南京、成都等实体店,根据库存会从不同地
延迟说明:
如遇国家法定节假日或异常天气状况,订单配送
可能会出现一定的延迟,届时铁血君品行会在首
页发布公告,您可以随时关注。
3.支付信息:
第三方支付平台
只要您开通了以下银行的"网上支付"功能,即可进行在线支付,无需手续费,实时到帐,方便快捷!
您可以到银行通过"转账"进行支付。查看详细方式&&
快递公司送货上门,客户收单验货后,直接将货款交付给配送员的结算方式。
(注:目前暂未开通刷卡服务,货到后需要现金支付)
铁血金币支付
铁血金币是铁血网发行的一种虚拟货币,每1枚金币等于人民币1分。
您的任何疑问均可致电我们的客服电话 400-811-6188 咨询(仅收市话费)
欢迎您发表原创并对其他用户有参考价值的商品评价。
商品评价 *
您还可以输入200个字符
在您发表评论前,请注意以下几点:
评论应该是针对商品本身而不是针对订单和送货等购物流程。
不仅评论商品的好或不好,更重要的是阐述之间的观点和理由,以帮助其他客户判断商品是否适合自己。
我们鼓励您的原创评论,未经授权的文字请勿转载。
有关订单和送货等购物过程的问题,请查看帮助中心,或者联系客服。
管理员有权删除违反上述要求的内容。
因厂家随时会更改一些产品的包装、颜色、产地等参数,所以该回复仅在当时对提问者有效,其他网友仅供参考!
您可以通过此咨询,咨询关于到商品,支付,物流等问题,由我们的客服给您解答,您也可登陆通过个人中心查看回复的咨询。
咨询类型:&商品咨询&&库存及配送&&支付问题&&发票
您还可以输入200个字符提交咨询
抱歉!你还没有登录,暂时不能对该 商品进行咨询。
400-811-6188
400-811-6188
铁血君客(北京)电子商务有限公司
因特网信息服务业务经营许可证号:京ICP证110286号 京ICP备号 京公网安备号mot de passe :
Ma-Bimbo, un jeu virtuel de mode et déco qui caricature le monde réel.
Décore ton appart, trouve un petit ami et un travail pour être la plus populaire !
2 731 Bimbos en ligne ! 19 681 959 Bimbos inscrites
Actualités
LUNDI 24 AO?T 2015 : ">Les gagnantes d'aujourd'hui à l'élection de miss Steampunk !
LUNDI 24 AO?T 2015 : ">Une nouvelle tenue + 1 nouvelle cuisine à Steampunk City !
DIMANCHE 23 AO?T 2015 : ">Les gagnantes d'aujourd'hui à l'élection de miss Steampunk !
, jeu virtuel de mode ! - Une réalisation de . Toute reproduction est interdite.Breadcrumbs
951-827-4349
Fax: 951-827-4294
1234C Genomics Building
Office Hours: ,
not specified -
not specified
Email: wenboma@ucr.edu
Molecular Plant-Pathogen Interactions
Biography & Research Interests
My laboratory studies the molecular mechanisms underlying microbial pathogenesis. In particular, we are interested in elucidating the strategies employed by bacteria and oomycete pathogens to facilitate the establishment and maintenance of symbiotic relationship with plant hosts. A combination of comparative genomic, functional genomic, genetic, biochemical and bioinformatic approaches is utilized to accomplish these goals. Novel knowledge obtained from our research will contribute to the development of sustainable control strategies against these destructive plant diseases.
The main focus of our research is a group of specialized virulence proteins, called effectors, which are secreted from the pathogens and directly manipulate specific physiological processes or signaling pathways in host cells for the benefit of infection. A broad range of parasites, including viruses, bacteria, fungi, oomycetes, protozoa, insects and nematodes, subvert host immunity through the functions of effectors. We are working on the type III effectors of bacterial pathogens and the RxLR effectors of Phytophthora pathogens to understand their functions and evolution during the arms race with plant hosts.
Type III effectors of bacterial pathogens
Gram-negative bacteria rely on a specialized, needle-like protein secretion system, the type III secretion system, to inject effectors directly into the host cytoplasm. Type III secretion system is a key pathogenicity determinant of pathogens that are responsible for some of the most devastating diseases on animals and plants. Type III effectors (T3Es) directly target with their host substrates and contribute to disease development. As a counter-attack strategy, plants evolved resistance (R) genes that recognize specific T3Es and trigger defense responses. However, this effector-triggered immunity (ETI) could be effectively evaded by the pathogens, which would then regain the ability to cause diseases. To date, the molecular basis of effector evolution remains poorly understood.
We use the model plant bacterial pathogen&Pseudomonas syringae and its natural host soybean to investigate the evolution of type III effectors. In particular, our work has focused on the HopZ1 effectors, which belongs to the widely distributed YopJ effector family. We identified two alleles of HopZ1: the ancester-like allele HopZ1a, which triggers ETI in soybean and a newly evolved allele HopZ1b, which evades soybean recognition and at the same time retains the virulence function (Ma et al., PLoS Genetics, 2006; Morgan et al., Mol Microbiol. 2010). We further demonstrated that HopZ1 directly targets the isoflavonoid biosynthetic pathway in soybean in order to suppress defense (Zhou et al., Cell Host & Microbe, 2011). We are now in the process of characterize a HopZ1a-specific target of soybean, which potentially mediates HopZ1a-triggered immunity. &
RxLR effectors of Phytophthora pathogens
Phytophthora are responsible for many devastating diseases on important crops including potato, tomato, melon, and soybean. The potato pathogen Phytophthora infestans triggered the Irish Famine in the 19th century and remains a serio and Phytophthora sojae is the second most destructive pathogen of soybean that causes an average of 200 million dollars annual loss in the U.S. To date, battling Phytophthora diseases is challenged by a lack of understanding of pathogenesis. Genome sequence analysis revealed hundreds of effector proteins from Phytophthora spp. The majority of these effectors contain a conserved N-terminal RxLR motif, which mediates their intake into host cells after being secreted from the pathogens through the specialized feeding structures, called haustoria. The functions of the vast majority of Phytophthora effectors remain unknown.We identified two Phytophthora effectors that suppress RNA silencing in plant hosts (Qiao et al., Nature Genetics, 2013). RNA silencing is a universal gene regulation mechanism in eukaryotes. A central player in RNA silencing are 20-30 nucleotide (nt) small RNAs that guide the sequence-specific repression of target genes. Remarkably, these Phytophthora Suppressors of RNA silencing (PSRs) significantly promote infection, suggesting that inhibiting host RNA silencing pathways is an essential virulence strategy of these destructive pathogens. These findings revealed a new perspective in plant-eukaryotic pathogen interactions that involves small RNAs as integral players in the regulation of plant immunity. We are now investigating the direct targets of PSRs in order to understand the molecular basis of the virulence activity of PSRs.
Effectors as detection markers and molecular probes to understand Citrus diseases
In addition to basic research, we are enthusiastic in using our expertise on effectors to address industrial concerns. Citrus industry in the US is under major threats from the severe bacterial diseases, especially Huanglongbing (HLB). My group is interested in developing detection methods by monitoring the effectors secreted from the bacterial pathogens causing these diseases. We anticipated that these effectors could be dispersed through the plant transportation system and thus facilitating diagnosis. We have successfully developed a detection marker for the citrus stubborn disease. We are now using a similar approach to develop diagnostic tools for HLB.
Furthermore, we plan to use effectors as molecular probes to understand the pathogenesis of HLB and eventually develop sustainable management strategies against this destructive pathogen.
Publications
Qiao Y., Shi J., Zhai Y., Hou Y., Ma W.* 2015. Phytophthora effector targets a novel regulator of small RNA pathway in plants to promote infection. Proc Natl Acad Sci USA. In press.
Xiong Q, Ye W, Choi D, Wong J, Qiao Y, Tao K, Wang Y, Ma W.* 2014.&Phytophthora Suppressor of RNA Silencing 2 is a Conserved RxLR Effector that Promotes Infection in Soybean and Arabidopsis thaliana. Mol Plant-Micro Interact. 27: .
Wong J., Gao L., Yang Y., Zhai J., Arikit S., Yu Y., Duan S., Chan V., Xiong Q., Yan J., Li S., Liu R., Wang Y., Tang G., Meyers B.C., Chen X., Ma W.* 2014. Roles of Small RNAs in Soybean Defense against Phytophthora sojae Infection. The Plant J. 79: 928-940.
Ma W. 2014. From pathogen recognition to plant immunity: BIK1 cROSses the divide. Cell Host & Microbe. 15: 253-254.
Shi J., Pagliaccia D., Morgan R.L., Qiao Y., Pan S., Vidalakis G., Ma, W.* 2014. Novel Diagnosis for citrus stubborn disease by detection of a Spiroplasma citri-secreted protein. Phytopathology. 104: 188-195.
Jiang S., Yao J., Ma K-W., Zhou H., Song J., He S.Y., Ma W.* 2013. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. PLoS Pathogens.&9(10): e1003715. doi:10.1371/journal.ppat.1003715
Qiao, Y., Liu, L., Xiong, Q., Flores, C., Wong, J., Shi, J., Wang, X., Liu, X., Xiang, Q., Jiang, S., Zhang, F., Wang, Y., Judelson, H.S., Chen, X., Ma, W.*. 2013. Oomycete Pathogens Encode RNA Silencing Suppressors. Nature Genetics. 45: 330-333.
Ma, K-W., Flores, C. and Ma, W.* 2011. Chromatin configuration as a battlefield in plant-bacteria interactions. Plant Physiol. 157: 535-543.
Zhou, H., Lin, J., Johnson, A., Morgan, R.L., Zhong, W. and Ma, W.* 2011. Pseudomonas syringae type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. Cell Host & Microbe. 9: 177-186.
Qiao Y., Piao R., Shi J., Lee S.I., Jiang W., Kim B.K., Lee J., Han L., Ma W., Koh H.J. 2011. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet. 122: .
Morgan, R.L., Zhou, H., Lehto, E., Nguyen, N., Bains, A., Xiaoqiang Wang and Ma, W.* 2010. Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts. Mol Microbiol. 76: 437-455.
Yang, Y., Zhao, J., Morgan, R.L., Ma, W.* and Jiang, T.* 2010. Computational prediction of type III secreted proteins from gram-negative bacteria. BMC Bioinformatics. DOI : 10.05-11-SI-S47. (* co-corresponding authors)
Zhou, H., Morgan, R.L., Guttman, D.S. and Ma, W.* 2009. Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems. Mol. Plant-Microbe Interact. 22: 176-189.
Ma, W. and Guttman, D.S. 2008. Evolution of prokaryotic and eukaryotic virulence effectors. Curr Opin Plant Biol. 11: 412-419.
Lewis, J.D., Abada, W., Ma, W., Guttman, D.S. and Desveaux, D. 2008. The HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis. J. Bacteriol. 190: .
Ma, W., Dong, F.F.T, Stavrinides, J. and Guttman, D.S. 2006. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genetics. 2(12): e209.DOI.
Stavrinides, J.*, Ma, W.* and Guttman, D.S. 2006. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog. 2(10): e104.DOI. (* co-first author)
Ma, W., Charles, T.C. and Glick, B.R. 2004. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl. Environ. Micriobiol. 70: .
Ma, W., Guinel, F.C. and Glick, B.R. 2003. Rhizobium leguminosarum bv. viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl. Environ. Microbiol. 69: .
Ma, W., Sebestianova, S., Sebestian, J., Burd, G.I., Guinel, F.C. and Glick, B.R. 2003. Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobia spp. Antonie van Leeuwenhoek 83: 285-291.
Ma, W., Penrose, D.M. and Glick, B.R. 2002. The effect of ethylene on the nodulation of legumes. Can. J. Microbiol. 48: 947-954.
Ma, W., Zalec, K. and Glick, B.R. 2001. Biological activity and colonization pattern of the bioluminescence labeled plant growth-promoting bacterium Kluyvera ascorbata SUD165/26. FEMS Microbiol Ecol. 35: 137-144.
Zhang, J., Ma, W. and Tan, H. 2002. Cloning, expression and characterization of a gene encoding nitroalkane-oxidizing enzyme from Streptomyces ansochromogenes. Eur. J. Biochem. 269: .
Glick, B.R., Penrose, D.M. and Ma, W. 2001. Bacterial promotion of plant growth. Biotechnol. Adv. 19: 135-138.
Department Information
Department of Plant Pathology and Microbiology
Tel: (951) 827-3598
Fax: (951) 827-2364
Related Links}

我要回帖

更多关于 ma-1 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信